Skip to main content

Advertisement

Log in

Genetic differences on intracranial versus spinal cord ependymal tumors: a meta-analysis of genetic researches

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Although ependymomas occur in both the brain and the spine, the prognosis is quite varied by tumor location. Spinal ependymomas usually follow a relatively benign course with more favorable prognosis than that of the intracranial ependymomas. The aim of this study is to evaluate the genetic differences between spinal ependymomas and their intracranial counterparts using a meta-analysis.

Methods

We searched PubMed, Embase, Web of Science, and the Cochrane library. Comparative or single arm genetic studies that enrolled patients with both intracranial and spinal ependymoma were included. The frequency of genetic aberration was calculated in each group. We calculated the odds ratio (OR) with 95 % confidence intervals (CIs) for direct comparative studies and the logit event rate (LER) and 95 % CI for single arm studies.

Results

Twenty-five studies comprising of 380 spinal ependymomas and 964 intracranial ependymomas were compared to determine the association of the genetic differences of ependymomas at different locations. There were 25 comparable genetic aberrations between spinal and intracranial ependymomas. Among the genes, the NF2 mutation was significantly associated with the spinal ependymomas rather than with the intracranial ependymomas (spinal tumor: LER −0.750, 95 % CI −1.233 to −0.266, intracranial tumor: LER −3.080, 95 % CI −3.983 to −2.177). Intracranial ependymomas were found to be significantly associated with EPB41L3 deletion (OR 0.34; 95 % CI 0.14–0.80) and HIC1 methylation (OR 0.12; 95 % CI 0.02–0.68).

Conclusion

The genetic aberrations of spinal ependymomas are quite different from those of intracranial ependymomas. The difference in prognosis of ependymoma by location may be associated with genetic difference. A more detailed understanding of them may enable the development of targeted therapy and the estimation of prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, Vaillant B, Goldman S, Packer RJ, Fouladi M, Pollack I, Mikkelsen T, Prados M, Omuro A, Soffietti R, Ledoux A, Wilson C, Long LH, Gilbert MR, Aldape K, Collaborative Ependymoma R (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vera-Bolanos E, Aldape K, Yuan Y, Wu J, Wani K, Necesito-Reyes MJ, Colman H, Dhall G, Lieberman FS, Metellus P, Mikkelsen T, Omuro A, Partap S, Prados M, Robins HI, Soffietti R, Wu J, Gilbert MR, Armstrong TS, Foundation C (2015) Clinical course and progression-free survival of adult intracranial and spinal ependymoma patients. Neuro Oncol 17:440–447

    PubMed  Google Scholar 

  3. Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, Janssen I, Giangaspero F, Forni M, Finocchiaro G, Genitori L, Giordano F, Riccardi R, Schoenmakers E, Massimino M, Sozzi G (2006) Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24:5223–5233

    Article  CAS  PubMed  Google Scholar 

  4. Taylor MD, Poppleton H, Fuller C, Su XP, Liu YX, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, MacDonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  PubMed  Google Scholar 

  5. Puget S, Grill J, Valent A, Bieche I, Dantas-Barbosa C, Kauffmann A, Dessen P, Lacroix L, Geoerger B, Job B, Dirven C, Varlet P, Peyre M, Dirks PB, Sainte-Rose C, Vassal G (2009) Candidate genes on chromosome 9q33–34 involved in the progression of childhood ependymomas. J Clin Oncol 27:1884–1892

    Article  CAS  PubMed  Google Scholar 

  6. Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, Milde T, Bender S, Wittmann A, Schottler A, Kulozik AE, Witt O, von Deimling A, Lichter P, Pfister S (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28:3182–3190

    Article  PubMed  Google Scholar 

  7. Pajtler KW, Witt H, Sill M, Jones DTW, Hovestadt V, Kratochwil F, Wani K, Tatevossian R, Punchihewa C, Johann P, Reimand J, Warnatz HJ, Ryzhova M, Mack S, Ramaswamy V, Capper D, Schweizer L, Sieber L, Wittmann A, Huang Z, van Sluis P, Volckmann R, Koster J, Versteeg R, Fults D, Toledano H, Avigad S, Hoffman LM, Donson AM, Foreman N, Hewer E, Zitterbart K, Gilbert M, Armstrong TS, Gupta N, Allen JC, Karajannis MA, Zagzag D, Hasselblatt M, Kulozik AE, Witt O, Collins VP, von Hoff K, Rutkowski S, Pietsch T, Bader G, Yaspo ML, von Deimling A, Lichter P, Taylor MD, Gilbertson R, Ellison DW, Aldape K, Korshunov A, Kool M, Pfister SM (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang B, Starostik P, Schraut H, Krauss J, Sorensen N, Roggendorf W (2003) Human ependymomas reveal frequent deletions on chromosomes 6 and 9. Acta Neuropathol 106:357–362

    Article  CAS  PubMed  Google Scholar 

  9. Scheil S, Bruderlein S, Eicker M, Herms J, Herold-Mende C, Steiner HH, Barth TFE, Moller P (2001) Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol 11:133–143

    Article  CAS  PubMed  Google Scholar 

  10. Ward S, Harding B, Wilkins P, Harkness W, Hayward R, Darling JL, Thomas DGT, Warr T (2001) Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer 32:59–66

    Article  CAS  PubMed  Google Scholar 

  11. Zheng PP, Pang JC, Hui AB, Ng HK (2000) Comparative genomic hybridization detects losses of chromosomes 22 and 16 as the most common recurrent genetic alterations in primary ependymomas. Cancer Genet Cytogenet 122:18–25

    Article  CAS  PubMed  Google Scholar 

  12. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, Benner A, Hielscher T, Milde T, Remke M, Jones DT, Northcott PA, Garzia L, Bertrand KC, Wittmann A, Yao Y, Roberts SS, Massimi L, Van Meter T, Weiss WA, Gupta N, Grajkowska W, Lach B, Cho YJ, von Deimling A, Kulozik AE, Witt O, Bader GD, Hawkins CE, Tabori U, Guha A, Rutka JT, Lichter P, Korshunov A, Taylor MD, Pfister SM (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, Rand V, Leary SES, White E, Eden C, Hogg T, Northcott P, Mack S, Neale G, Wang YD, Coyle B, Atkinson J, DeWire M, Kranenburg TA, Gillespie Y, Allen JC, Merchant T, Boop FA, Sanford RA, Gajjar A, Ellison DW, Taylor MD, Grundy RG, Gilbertson RJ (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466:632–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ebert C, von Haken M, Meyer-Puttlitz B, Wiestler OD, Reifenberger G, Pietsch T, von Deimling A (1999) Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155:627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh PK, Gutmann DH, Fuller CE, Newsham IF, Perry A (2002) Differential involvement of protein 4.1 family members DAL-1 and NF2 in intracranial and intraspinal ependymomas. Mod Pathol 15:526–531

    Article  PubMed  Google Scholar 

  16. Zadnik PL, Gokaslan ZL, Burger PC, Bettegowda C (2013) Spinal cord tumours: advances in genetics and their implications for treatment. Nat Rev Neurol 9:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, Coyle B, Grundy R (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786

    Article  CAS  PubMed  Google Scholar 

  18. Andreiuolo F, Ferreira C, Puget S, Grill J (2013) Current and evolving knowledge of prognostic factors for pediatric ependymomas. Future Oncol 9:183–191

    Article  CAS  PubMed  Google Scholar 

  19. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li YJ, Lee R, Tatevossian RG, Phoenix TN, Thiruvenkatam R, White E, Tang B, Orisme W, Gupta K, Rusch M, Chen X, Li YX, Nagahawhatte P, Hedlund E, Finkelstein D, Wu G, Shurtleff S, Easton J, Boggs K, Yergeau D, Vadodaria B, Mulder HL, Becksford J, Gupta P, Huether R, Ma J, Song GC, Gajjar A, Merchant T, Boop F, Smith AA, Ding L, Lu C, Ochoa K, Zhao D, Fulton RS, Fulton LL, Mardis ER, Wilson RK, Downing JR, Green DR, Zhang JH, Ellison DW, Gilbertson RJ (2014) C11orf95-RELA fusions drive oncogenic NF-kappa B signalling in ependymoma. Nature 506:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajaram V, Leuthardt EC, Singh PK, Ojemann JG, Brat DJ, Prayson RA, Perry A (2003) 9p21 and 13q14 dosages in ependymomas. A clinicopathologic study of 101 cases. Mod Pathol 17:9–14

    Article  Google Scholar 

  21. Bettegowda C, Agrawal N, Jiao YC, Wang YX, Wood LD, Rodriguez FJ, Hruban RH, Gallia GL, Binder ZA, Riggins CJ, Salmasi V, Riggins GJ, Reitman ZJ, Rasheed A, Keir S, Shinjo S, Marie S, McLendon R, Jallo G, Vogelstein B, Bigner D, Yan H, Kinzler KW, Papadopoulos N (2013) Exomic sequencing of four rare central nervous system tumor types. Oncotarget 4:572–583

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Birks DK, Handler MH, Foreman NK (2010) Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 20:560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stephen JH, Sievert AJ, Madsen PJ, Judkins AR, Resnick AC, Storm PB, Rushing EJ, Santi M (2012) Spinal cord ependymomas and myxopapillary ependymomas in the first 2 decades of life: a clinicopathological and immunohistochemical characterization of 19 cases. J Neurosurg Pediatrics 9:646–653

    Article  Google Scholar 

  24. Karakoula K, Jacques TS, Phipps KP, Harkness W, Thompson D, Harding BN, Darling JL, Warr TJ (2014) Epigenetic genome-wide analysis identifies BEX1 as a candidate tumour suppressor gene in paediatric intracranial ependymoma. Cancer Lett 346:34–44

    Article  CAS  PubMed  Google Scholar 

  25. Rajaram V, Gutmann DH, Prasad SK, Mansur DB, Perry A (2005) Alterations of protein 4.1 family members in ependymomas: a study of 84 cases. Mod Pathol 18:991–997

    Article  CAS  PubMed  Google Scholar 

  26. Alonso ME, Bello MJ, Gonzalez-Gomez P, Arjona D, de Campos JM, Gutierrez M, Rey JA (2004) Aberrant CpG island methylation of multiple genes in ependymal tumors. J Neurooncol 67:159–165

    Article  PubMed  Google Scholar 

  27. Andreiuolo F, Puget S, Peyre M, Dantas-Barbosa C, Boddaert N, Philippe C, Mauguen A, Grill J, Varlet P (2010) Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas. Neuro Oncol 12:1126–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Athanasiou A, Perunovic B, Quilty RD, Gorgoulis VG, Kittas C, Love S (2003) Expression of mos in ependymal gliomas. Am J Clin Pathol 120:699–705

    Article  CAS  PubMed  Google Scholar 

  29. Bortolotto S, Chiado-Piat L, Cavalla P, Bosone I, Mauro A, Schiffer D (2001) CDKN2A/p16 in ependymomas. J Neurooncol 54:9–13

    Article  CAS  PubMed  Google Scholar 

  30. Gilbertson RJ, Bentley L, Hernan R, Junttila TT, Frank AJ, Haapasalo H, Connelly M, Wetmore C, Curran T, Elenius K, Ellison DW (2002) ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res 8:3054–3064

    CAS  PubMed  Google Scholar 

  31. Hamilton DW, Lusher ME, Lindsey JC, Ellison DW, Clifford SC (2005) Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett 227:75–81

    Article  CAS  PubMed  Google Scholar 

  32. Kraus JA, de Millas W, Sorensen N, Herbold C, Schichor C, Tonn JC, Wiestler OD, von Deimling A, Pietsch T (2001) Indications for a tumor suppressor gene at 22q11 involved in the pathogenesis of ependymal tumors and distinct from hSNF5/INI1. Acta Neuropathol 102:69–74

    CAS  PubMed  Google Scholar 

  33. Lamszus K, Lachenmayer L, Heinemann U, Kluwe L, Finckh U, Hoppner W, Stavrou D, Fillbrandt R, Westphal M (2001) Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 91:803–808

    Article  CAS  PubMed  Google Scholar 

  34. Magrassi L, Marziliano N, Inzani F, Cassini P, Chiaranda I, Skrap M, Pizzolito S, Arienta C, Arbustini E (2010) EDG3 and SHC3 on chromosome 9q22 are co-amplified in human ependymomas. Cancer Lett 290:36–42

    Article  CAS  PubMed  Google Scholar 

  35. Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, Radlwimmer B, Lichter P (2006) Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12:2070–2079

    Article  CAS  PubMed  Google Scholar 

  36. Michalowski MB, de Fraipont F, Michelland S, Entz-Werle N, Grill J, Pasquier B, Favrot MC, Plantaz D (2006) Methylation of RASSFIA and TRAIL pathway-related genes is frequent in childhood intracranial ependymornas and benign choroid plexus papilloma. Cancer Genet Cytogenet 166:74–81

    Article  CAS  PubMed  Google Scholar 

  37. Modena P, Buttarelli FR, Miceli R, Piccinin E, Baldi C, Antonelli M, Morra I, Lauriola L, Di Rocco C, Garre ML, Sardi I, Genitori L, Maestro R, Gandola L, Facchinetti F, Collini P, Sozzi G, Giangaspero F, Massimino M (2012) Predictors of outcome in an AIEOP series of childhood ependymomas: a multifactorial analysis. Neuro Oncol 14:1346–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rousseau E, Ruchoux MM, Scaravilli F, Chapon F, Vinchon M, De Smet C, Godfraind C, Vikkula M (2003) CDKN2A, CDKN2B and p14(ARF) are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol 29:574–583

    Article  CAS  PubMed  Google Scholar 

  39. Waha A, Koch A, Hartmann W, Mack H, Schramm J, Sorensen N, Berthold F, Wiestler OD, Pietsch T, Waha A (2004) Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 110:542–549

    Article  CAS  PubMed  Google Scholar 

  40. Gupta RK, Sharma MC, Suri V, Kakkar A, Singh M, Sarkar C (2014) Study of chromosome 9q gain, Notch pathway regulators and Tenascin-C in ependymomas. J Neurooncol 116:267–274

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki SO, Iwaki T (2000) Amplification and overexpression of mdm2 gene in ependymomas. Mod Pathol 13:548–553

    Article  CAS  PubMed  Google Scholar 

  42. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17 Suppl 4:iv1–iv62

    Article  PubMed  Google Scholar 

  43. Rubio MP, Correa KM, Ramesh V, MacCollin MM, Jacoby LB, Von Deimling A, Gusella JF, Louis DN (1994) Analysis of the neurofibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res 54:45–47

    CAS  PubMed  Google Scholar 

  44. Garcia C, Gutmann DH (2014) Nf2/Merlin controls spinal cord neural progenitor function in a Rac1/ErbB2-dependent manner. PLoS One 9:e97320

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee CH, Chung CK, Ohn JH, Kim CH (2016) The similarities and differences between intracranial and spinal ependymomas: a review from a genetic research perspective. J Korean Neurosurg Soc 59:83–90

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang I, Nagasawa DT, Kim W, Spasic M, Trang A, Lu DC, Martin NA (2012) Chromosomal anomalies and prognostic markers for intracranial and spinal ependymomas. J Clin Neurosci 19:779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao Y, Mack SC, Taylor MD (2011) Molecular genetics of ependymoma. Chin J Cancer 30:669–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hanemann CO (2008) Magic but treatable? Tumours due to loss of merlin. Brain 131:606–615

    Article  CAS  PubMed  Google Scholar 

  49. Fouladi M, Stewart CF, Blaney SM, Onar-Thomas A, Schaiquevich P, Packer RJ, Gajjar A, Kun LE, Boyett JM, Gilbertson RJ (2010) Phase I trial of lapatinib in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study. J Clin Oncol 28:4221–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DeWire M, Fouladi M, Turner DC, Wetmore C, Hawkins C, Jacobs C, Yuan Y, Liu D, Goldman S, Fisher P, Rytting M, Bouffet E, Khakoo Y, Hwang EI, Foreman N, Stewart CF, Gilbert MR, Gilbertson R, Gajjar A (2015) An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). J Neurooncol 123:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daly AK, Day CP (2001) Candidate gene case-control association studies: advantages and potential pitfalls. Br J Clin Pharmacol 52:489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thornton A, Lee P (2000) Publication bias in meta-analysis: its causes and consequences. J Clin Epidemiol 53:207–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2010-0028631). The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Kee Chung.

Ethics declarations

Conflicts of interest

None of the authors has any financial interest in the subject under discussion in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Chung, C.K. & Kim, C.H. Genetic differences on intracranial versus spinal cord ependymal tumors: a meta-analysis of genetic researches. Eur Spine J 25, 3942–3951 (2016). https://doi.org/10.1007/s00586-016-4745-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4745-4

Keywords

Navigation