European Spine Journal

, Volume 25, Issue 9, pp 2856–2863 | Cite as

Axial loading during MRI influences T2-mapping values of lumbar discs: a feasibility study on patients with low back pain

  • Martin NilssonEmail author
  • K. Lagerstrand
  • I. Kasperska
  • H. Brisby
  • H. Hebelka
Original Article



To investigate whether axial loading of the spine during MRI (alMRI) instantaneously induces changes in biochemical disc features as reflected by altered quantitative T2 values in patients with chronic low back pain (LBP).


T2 mapping was performed on 11 LBP patients (54 lumbar discs) during the conventional unloaded MRI and subsequent alMRI. Each disc was divided into five volumetric regions of interests (ROIs), anterior annulus fibrosus (AF) (ROI 1), the interface anterior AF-nucleus pulposus (NP) (ROI 2), NP (ROI 3), the interface NP-posterior AF (ROI 4), and the posterior AF (ROI 5). The mean T2 values for each ROI were compared between MRI and alMRI and correlated with degeneration grade (Pfirrmann), disc angle, and disc level.


With alMRI, T2 values increased significantly in the whole disc as well as in various parts of the disc with an increase in ROI 1–3 and a decrease in ROI 5. The changes in T2 values correlated to degeneration grade, changes in disc angle, and lumbar level.


alMRI instantaneously induces T2-value changes in lumbar discs and is, thus, a feasible method to reveal dynamic, biochemical disc features in patients with chronic LBP.


Chronic low back pain Quantitative magnetic resonance imaging T2 mapping Disc degeneration Axially loaded magnetic resonance imaging 



The study was supported by a regional Grant under the ALF agreement, number 428161 to HB, and by a grant to HH from Gothenburg Medical Society. The sponsors of the study had no influence on the analysis and interpretation of data; nor in the writing of the report. The authors would like to thank the MRI staff at Molndal Hospital, Gothenburg, Sweden, for the pleasant co-operation.

Compliance with ethical standards

Conflict of interest



  1. 1.
    Dagenais S, Caro J, Haldeman S (2008) A systematic review of low back pain cost of illness studies in the US and internationally. Spine J 8:8–20. doi: 10.1016/j.spinee.2007.10.005 CrossRefPubMedGoogle Scholar
  2. 2.
    Bogduk N, Aprill C, Derby R (2013) Lumbar discogenic pain: state-of-the-art review. Pain Med 14:813–836. doi: 10.1111/pme.12082 CrossRefPubMedGoogle Scholar
  3. 3.
    Raj PP (2008) Intervertebral disc: anatomy–physiology–pathophysiology-treatment. Pain Pract 8:18–44. doi: 10.1111/j.1533-2500.2007.00171.x CrossRefPubMedGoogle Scholar
  4. 4.
    Samartzis D, Borthakur A, Belfer I, Bow C, Lotz JC, Wang HQ, Cheung KM, Carragee E, Karppinen J (2015) Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J 15:1919–1932. doi: 10.1016/j.spinee.2014.09.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Lotz JC, Fields AJ, Liebenberg EC (2013) The role of the vertebral end plate in low back pain. Glob Spine J 3:153–164. doi: 10.1055/s-0033-1347298 CrossRefGoogle Scholar
  6. 6.
    Fields AJ, Han M, Krug R, Lotz JC (2015) Cartilaginous end plates: quantitative MR imaging with very short echo times-orientation dependence and correlation with biochemical composition. Radiology 274:482–489. doi: 10.1148/radiol.14141082 CrossRefPubMedGoogle Scholar
  7. 7.
    Chou R, Fu R, Carrino JA, Deyo RA (2009) Imaging strategies for low-back pain: systematic review and meta-analysis. Lancet 373:463–472. doi: 10.1016/S0140-6736(09)60172-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Endean A, Palmer KT, Coggon D (2011) Potential of magnetic resonance imaging findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. Spine 36:160–169. doi: 10.1097/BRS.0b013e3181cd9adb CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Manchikanti L, Glaser SE, Wolfer L, Derby R, Cohen SP (2009) Systematic review of lumbar discography as a diagnostic test for chronic low back pain. Pain Physician 12:541–559PubMedGoogle Scholar
  10. 10.
    Wang YX, Zhao F, Griffith JF, Mok GS, Leung JC, Ahuja AT, Yuan J (2013) T1rho and T2 relaxation times for lumbar disc degeneration: an in vivo comparative study at 3.0-Tesla MRI. Eur Radiol 23:228–234. doi: 10.1007/s00330-012-2591-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Welsch GH, Trattnig S, Paternostro-Sluga T, Bohndorf K, Goed S, Stelzeneder D, Mamisch TC (2011) Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI. Skelet Radiol 40:543–551. doi: 10.1007/s00256-010-1036-8 CrossRefGoogle Scholar
  12. 12.
    Hoppe S, Quirbach S, Mamisch TC, Krause FG, Werlen S, Benneker LM (2012) Axial T2 mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol 22:2013–2019. doi: 10.1007/s00330-012-2448-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Yu HJ, Bahri S, Gardner V, Muftuler LT (2015) In vivo quantification of lumbar disc degeneration: assessment of ADC value using a degenerative scoring system based on Pfirrmann framework. Eur Spine J 24:2442–2448. doi: 10.1007/s00586-014-3721-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Boos N, Boesch C (1995) Quantitative magnetic resonance imaging of the lumbar spine. Potential for investigations of water content and biochemical composition. Spine 20:2358–2365 (discussion 2366) CrossRefPubMedGoogle Scholar
  15. 15.
    Mwale F, Iatridis JC, Antoniou J (2008) Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity. Eur Spine J 17(Suppl 4):432–440. doi: 10.1007/s00586-008-0744-4 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, Yamashita T (2012) Correlation between T2 relaxation time and intervertebral disk degeneration. Skelet Radiol 41:163–167. doi: 10.1007/s00256-011-1144-0 CrossRefGoogle Scholar
  17. 17.
    Marinelli NL, Haughton VM, Anderson PA (2010) T2 relaxation times correlated with stage of lumbar intervertebral disk degeneration and patient age. Am J Neuroradiol 31:1278–1282. doi: 10.3174/ajnr.A2080 CrossRefPubMedGoogle Scholar
  18. 18.
    Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE (2007) Classification of intervertebral disk degeneration with axial T2 mapping. Am J Roentgenol 189:936–942. doi: 10.2214/AJR.07.2142 CrossRefGoogle Scholar
  19. 19.
    Blumenkrantz G, Zuo J, Li X, Kornak J, Link TM, Majumdar S (2010) In vivo 3.0-tesla magnetic resonance T1ρ and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63:1193–1200CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stelzeneder D, Kovacs BK, Goed S, Welsch GH, Hirschfeld C, Paternostro-Sluga T, Friedrich KM, Mamisch TC, Trattnig S (2012) Effect of short-term unloading on T2 relaxation time in the lumbar intervertebral disc—in vivo magnetic resonance imaging study at 3.0 tesla. Spine J 12:257–264. doi: 10.1016/j.spinee.2012.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stelzeneder D, Welsch GH, Kovacs BK, Goed S, Paternostro-Sluga T, Vlychou M, Friedrich K, Mamisch TC, Trattnig S (2012) Quantitative T2 evaluation at 3.0 T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol 81:324–330. doi: 10.1016/j.ejrad.2010.12.093 CrossRefPubMedGoogle Scholar
  22. 22.
    Maquer G, Brandejsky V, Benneker LM, Watanabe A, Vermathen P, Zysset PK (2014) Human intervertebral disc stiffness correlates better with the Otsu threshold computed from axial T2 map of its posterior annulus fibrosus than with clinical classifications. Med Eng Phys 36:219–225. doi: 10.1016/j.medengphy.2013.11.008 CrossRefPubMedGoogle Scholar
  23. 23.
    Hebelka H, Brisby H, Hansson T (2014) Comparison between pain at discography and morphological disc changes at axial loaded MRI in patients with low back pain. Eur Spine J 23:2075–2082. doi: 10.1007/s00586-014-3408-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Willen J, Danielson B (2001) The diagnostic effect from axial loading of the lumbar spine during computed tomography and magnetic resonance imaging in patients with degenerative disorders. Spine 26:2607–2614CrossRefPubMedGoogle Scholar
  25. 25.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878CrossRefPubMedGoogle Scholar
  26. 26.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  27. 27.
    Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34:934–940. doi: 10.1097/BRS.0b013e3181a01b3f CrossRefPubMedGoogle Scholar
  28. 28.
    Splendiani A, Perri M, Grattacaso G, Di Tunno V, Marsecano C, Panebianco L, Gennarelli A, Felli V, Varrassi M, Barile A, Di Cesare E, Masciocchi C, Gallucci M (2016) Magnetic resonance imaging (MRI) of the lumbar spine with dedicated G-scan machine in the upright position: a retrospective study and our experience in 10 years with 4305 patients. Radiol Med (Torino) 121:38–44. doi: 10.1007/s11547-015-0570-9 CrossRefGoogle Scholar
  29. 29.
    Silcox DH 3rd, Horton WC, Silverstein AM (1995) MRI of lumbar intervertebral discs. Diurnal variations in signal intensities. Spine 20:807–811 (discussion 811–812) PubMedGoogle Scholar
  30. 30.
    Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, Schick F (2008) T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging 28:252–257. doi: 10.1002/jmri.21390 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of RadiologySahlgrenska University HospitalGöteborgSweden
  2. 2.Department of OrthopaedicsSahlgrenska University HospitalGöteborgSweden
  3. 3.Department of Medical Physics and TechniquesSahlgrenska University HospitalGöteborgSweden
  4. 4.Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden

Personalised recommendations