Advertisement

European Spine Journal

, Volume 25, Issue 10, pp 3154–3161 | Cite as

Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré–Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data

  • Arnaud Hocquelet
  • François CornelisEmail author
  • Anna Jirot
  • Laurent Castaings
  • Mathieu de Sèze
  • Olivier Hauger
Original Article

Abstract

Purpose

The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré–Fringe projections.

Methods and materials

Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland–Altman analysis, and reliability using intraclass correlation coefficient (ICC).

Results

ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was −4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001).

Conclusion

While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré–Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

Keywords

Spine X-rays Scoliosis Image processing Computer-assisted Moire topography 

Notes

Acknowledgments

The authors thank Pippa McKelvie-Sebileau for medical editorial services.

Compliance with ethical standards

Funding

No funding sources.

Conflict of interest

None of the authors has any potential conflict of interest.

Supplementary material

586_2016_4659_MOESM1_ESM.pdf (249 kb)
Supplementary file 1: A) Kyphosis, B) Lordosis, C) Pelvic incidence, D) Sacral slope and E) Femoral weight (PDF 248 kb)

References

  1. 1.
    Harris JA, Mayer OH, Shah SA, Campbell RM Jr, Balasubramanian S (2014) A comprehensive review of thoracic deformity parameters in scoliosis. Eur Spine J 23:2594–2602. doi: 10.1007/s00586-014-3580-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Deacon P, Flood BM, Dickson RA (1984) Idiopathic scoliosis in three dimensions. A radiographic and morphometric analysis. J Bone Joint Surg Br 66:509–512PubMedGoogle Scholar
  3. 3.
    Richards BS (1992) Measurement error in assessment of vertebral rotation using the Perdriolle torsionmeter. Spine (Phila Pa 1976) 17:513–517CrossRefGoogle Scholar
  4. 4.
    Nash CL Jr, Moe JH (1969) A study of vertebral rotation. J Bone Joint Surg Am 51:223–229PubMedGoogle Scholar
  5. 5.
    Benson DR, Schultz AB, Dewald RL (1976) Roentgenographic evaluation of vertebral rotation. J Bone Joint Surg Am 58:1125–1129PubMedGoogle Scholar
  6. 6.
    Drerup B (1984) Principles of measurement of vertebral rotation from frontal projections of the pedicles. J Biomech 17:923–935CrossRefPubMedGoogle Scholar
  7. 7.
    Drerup B (1985) Improvements in measuring vertebral rotation from the projections of the pedicles. J Biomech 18:369–378CrossRefPubMedGoogle Scholar
  8. 8.
    Barsanti CM, deBari A, Covino BM (1990) The torsion meter: a critical review. J Pediatr Orthop 10:527–531CrossRefPubMedGoogle Scholar
  9. 9.
    Glaser DA, Doan J, Newton PO (2012) Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976) 37:1391–1397. doi: 10.1097/BRS.0b013e3182518a15 CrossRefGoogle Scholar
  10. 10.
    Diefenbach C, Lonner BS, Auerbach JD, Bharucha N, Dean LE (2013) Is radiation-free diagnostic monitoring of adolescent idiopathic scoliosis feasible using upright positional magnetic resonance imaging? Spine (Phila Pa 1976) 38:576–580. doi: 10.1097/BRS.0b013e318286b18a CrossRefGoogle Scholar
  11. 11.
    Illes T, Tunyogi-Csapo M, Somoskeoy S (2011) Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 20:135–143. doi: 10.1007/s00586-010-1566-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Ilharreborde B, Ferrero E, Alison M, Mazda K (2016) EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J 25:526–531. doi: 10.1007/s00586-015-3960-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Illes T, Somoskeoy S (2012) The EOS imaging system and its uses in daily orthopaedic practice. Int Orthop 36:1325–1331. doi: 10.1007/s00264-012-1512-y CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Purcell D, Davies A, Farahi F (2006) Effective wavelength calibration for moire fringe projection. Appl Opt 45:8629–8635CrossRefPubMedGoogle Scholar
  15. 15.
    Schroeder J, Reer R, Braumann KM (2015) Video raster stereography back shape reconstruction: a reliability study for sagittal, frontal, and transversal plane parameters. Eur Spine J 24:262–269. doi: 10.1007/s00586-014-3664-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Nguyen DV, Vo QN, Le LH, Lou EH (2015) Validation of 3D surface reconstruction of vertebrae and spinal column using 3D ultrasound data—a pilot study. Med Eng Phys 37:239–244. doi: 10.1016/j.medengphy.2014.11.007 CrossRefPubMedGoogle Scholar
  17. 17.
    Chen W, Le LH, Lou EH (2016) Reliability of the axial vertebral rotation measurements of adolescent idiopathic scoliosis using the center of lamina method on ultrasound images: in vitro and in vivo study. Eur Spine J. doi: 10.1007/s00586-016-4492-6 Google Scholar
  18. 18.
    Dumas R, Blanchard B, Carlier R, de Loubresse CG, Le Huec JC, Marty C, Moinard M, Vital JM (2008) A semi-automated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Med Biol Eng Comput 46:85–92. doi: 10.1007/s11517-007-0253-3 CrossRefPubMedGoogle Scholar
  19. 19.
    Chang WY, Hsu FH, Chen KH, Chen JH, Hsu KY (2014) Heterodyne moire surface profilometry. Opt Express 22:2845–2852. doi: 10.1364/OE.22.002845 CrossRefPubMedGoogle Scholar
  20. 20.
    Bland JM, Altman DG (1990) A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med 20:337–340CrossRefPubMedGoogle Scholar
  21. 21.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRefPubMedGoogle Scholar
  22. 22.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMedGoogle Scholar
  23. 23.
    Ilharreborde B, Steffen JS, Nectoux E, Vital JM, Mazda K, Skalli W, Obeid I (2011) Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976) 36:1306–1313. doi: 10.1097/BRS.0b013e3182293548 CrossRefGoogle Scholar
  24. 24.
    Wybier M, Bossard P (2013) Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine 80:238–243. doi: 10.1016/j.jbspin.2012.09.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Arnaud Hocquelet
    • 1
  • François Cornelis
    • 1
    Email author
  • Anna Jirot
    • 2
  • Laurent Castaings
    • 1
  • Mathieu de Sèze
    • 2
  • Olivier Hauger
    • 1
  1. 1.Service D’imagerie Ostéo-articulaireHopital PellegrinBordeauxFrance
  2. 2.Unité de Médecine Orthopédique, Service de MPR, Hôpital Tastet-GirardGroupe Hospitalier Pellegrin, CHU de BordeauxBordeauxFrance

Personalised recommendations