Skip to main content


Log in

Dynamic global sagittal alignment evaluated by three-dimensional gait analysis in patients with degenerative lumbar kyphoscoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript



Sagittal vertical axis (SVA) is the most commonly used parameter for evaluating global sagittal alignment (GSA) in a static condition. However, its dynamic statuses remain unclear. The aim of this study was to evaluate dynamic GSA of degenerative lumbar kyphoscoliosis (DLKS) using three-dimensional motion analysis system (3D-MAS).


Twenty-six patients with DLKS underwent gait analysis using 3D-MAS. Static (S-) and dynamic (D-) trunk angle (TA) (the angle between the vertical axis and the line connecting C7 and S1 spinous processes) and S-sagittal trunk shift (STS) and D-STS (the distance between the two vertical lines running through C7 and S1 spinous process) were recorded during treadmill walking. Pelvic angle (PA) (the angle between the horizontal axis and the line connecting the posterior and anterior superior iliac spine) were also recorded. S-PA and D-PA represent retroversion or anteversion of the pelvis, which can be substituted for pelvic tilt. As to dynamic parameters, those at the initial five steps (Di) and the final five steps (Df) of treadmill walking were also recorded.


The median S-TA, S-STS, and S-PA were 16.0°, 11.9 cm, and −5.5° (retroversion). The median D parameters were Di-TA/Df-TA 21.8°/26.9°; Di-STS/Df-STS 14.1/21.1 cm; and Di-PA/Df-PA 15.7°/22.8° (anteversion). All D parameters were significantly greater than S parameters (P < 0.01) and all Df parameters were also significantly worse than Di parameters (P < 0.001). Thus, compensated GSA by pelvic retroversion in static condition was lost due to anteversion change of the pelvis immediately after start of walking and worsened over time.


Dynamic GSA assessment using 3D-MAS can avoid underestimation of GSA loss that is detected by static standing full-length radiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Barrey C, Roussouly P, Perrin G, Le Huec JC (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20:626–633. doi:10.1007/s00586-011-1930-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:834–841. doi:10.1007/s00586-013-3030-z

    Article  PubMed Central  Google Scholar 

  3. Le Huec JC, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J 20:556–557. doi:10.1007/s00586-011-1943-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Glassman SD, Bridwell KH, Dimar JR, Horton W, Berven S, Schwab F (2013) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30:2024–2029

    Article  Google Scholar 

  5. Lafage V, Schwab F, Pater A, Patel A, Hawkinson N, Farcy JP (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34:E599–E606. doi:10.1097/BRS.0b013e3181aad219

    Article  Google Scholar 

  6. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila Pa 1976) 35:2224–2231. doi:10.1097/BRS.0b013e3181ee6bd4

    Article  Google Scholar 

  7. Schwab F, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS, Boachie-Adjei O, Burton DC, Akbarnia BA, Mundis GM, Ames CP, Kebaish K, Hart RA, Farcy JP, Lafage V; International Spine Study Group (ISSG) (2013) Radiographical spinopelvic parameter and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976) 13:E803–E881. doi:10.1097/BRS.0b013e318292b7b9

    Google Scholar 

  8. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW (1995) An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine (Phila Pa 1976) 20:1351–1358

    Article  CAS  Google Scholar 

  9. Faldini C, Di Martino A, Borghi R, Perna F, Toscano A, Traina F (2015) Long vs. short fusions for adult lumbar degenerative scoliosis: does balance matters? Eur Spine J 24:S887–S892. doi:10.1007/s00586-015-4266-6

    Article  Google Scholar 

  10. Le Huec JC, Saddiki R, Franke J, Rigal J, Aunoble S (2011) Equilibrium of the human body and the gravity line: the basics. Eur Spine J 20:558–563. doi:10.1007/s00586-011-1939-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23:1177–1189. doi:10.1007/s00586-014-3227-9

    Article  PubMed  Google Scholar 

  12. Taneichi H (2016) Update on pathology and surgical treatment for adult spinal deformity. Instructional lecture. J Orthop Sci 21:116–123. doi:10.1016/j.jos.2015.12.013

    Article  PubMed  Google Scholar 

  13. Kawada K, Matsuda T, Takanashi A, Miyazima S, Yamamoto S (2015) Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt. J Phys Ther Sci 27:597–600. doi:10.1589/jpts.27.597

    Article  PubMed  PubMed Central  Google Scholar 

  14. Horton WC, Brown CW, Bridwell KH, Glassman SD, Suk SI, Cha CW (2005) Is there an optimal patient stance for obtaining a lateral 36” radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976) 30:427–433

    Article  Google Scholar 

  15. Lee CS, Lee CK, Kim YT, Hong YM, Yoo JH (2001) Dynamic sagittal imbalance of the spine in degenerative flat back. Spine (Phila Pa 1976) 26:2029–2035

    Article  CAS  Google Scholar 

  16. Wolf SI, Mikut R, Kranzl A, Dreher T (2014) Which functional impairments are the main contributors to pelvic anterior tilt during gait in individuals with cerebral palsy? Gait Posture 39:359–364. doi:10.1016/j.gaitpost.2013.08.014

  17. Thurston AJ, Harris JD (1983) Normal kinematics of the lumbar spine and pelvis. Spine (Phila Pa 1976) 8:199–205

  18. Takemitsu Y, Harada Y, Iwahara T, Miyamoto M, Miyatake Y (1988) Lumbar degenerative kyphosis. Clinical, radiological and epidemiological studies. Spine (Phila Pa 1976) 13:1317–1326

  19. Takahashi I, Kikuchi S, Sato K, Iwabuchi M (2007) Effect of the mechanical load on forward bending motion of the trunk: comparison between patients with motion-induced intermittent low back pain and healthy subjects. Spine (Phila Pa 1976) 32:E73–E78

  20. Enomoto M, Ukegawa D, Sakai K, Tomizawa S, Arai Y, Kawabata S, Kato T, Yoshii T, Shinomiya K, Okawa A (2012) Increase in paravertebral muscle activity in lumbar kyphosis patients by surface electromyography compared with lumbar spinal canal stenosis patients and healthy volunteers. J Spinal Disord Tech 25:E167–E173. doi:10.1097/BSD.0b013e31825d63c4

    Article  PubMed  Google Scholar 

  21. Murray MP, Spurr GB, Sepic SB, Gardner GM, Mollinger LA (1985) Treadmill vs floor walking: kinematics, electromyogram, and heart rate. J Appl Physiol 59:87–91

    CAS  PubMed  Google Scholar 

  22. Arsenault AB, Winter DA, Marteniuk RG (1986) Treadmill versus walkway locomotion in humans: an ENG study. Ergonomics 29:665–676

    Article  CAS  PubMed  Google Scholar 

  23. Van Gheluwe B, Smekens J, Roosen P (1994) Electrodynographic evaluation of the foot during treadmill versus overground locomotion. J Am Podiatr Med Assoc 84:598–606

    Article  PubMed  Google Scholar 

  24. Alton F, Baldey L, Caplans S, Morrissey MC (1998) A kinematic comparison of overground and treadmill walking. Clin Biomech 13:434–440

    Article  Google Scholar 

  25. Nymark JR, Balmer SJ, Melis EH, Lemaire ED, Millar S (2005) Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. J Rehabil Res Dev 42:523–534

    Article  PubMed  Google Scholar 

  26. Thorstensson AJ, Nilsson J, Carlson H, Zomlefer MR (1984) Trunk movements in human locomotion. Acta Physiol Scand 121:9–22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hiroshi Taneichi.

Ethics declarations

Conflict of interest

None of the authors have any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiba, Y., Taneichi, H., Inami, S. et al. Dynamic global sagittal alignment evaluated by three-dimensional gait analysis in patients with degenerative lumbar kyphoscoliosis. Eur Spine J 25, 2572–2579 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: