Skip to main content
Log in

Cervical spinal functional magnetic resonance imaging of the spinal cord injured patient during electrical stimulation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the spatial distribution and signal intensity changes following spinal cord activation in patients with spinal cord injury.

Methods

This study used spinal functional magnetic resonance imaging (fMRI) based on signal enhancement by extra-vascular water protons (SEEP) to assess elicited responses during subcutaneous electrical stimulation at the right elbow and right thumb in the cervical spinal cord.

Results

Seven healthy volunteers and seven patients with cervical spinal cord injury (SCI) were included in this study. Significant functional activation was observed mainly in the right side of the spinal cord at the level of the C5–C6 cervical vertebra in both the axial and sagittal planes. A higher percentage of signal changes (4.66 ± 2.08 % in injured subjects vs. 2.78 ± 1.66 % in normal) and more average activation voxels (4.69 ± 2.59 in injured subjects vs. 2.56 ± 1.13 in normal subject) in axial plane at the C5–C6 cervical vertebra with a statistically significant difference. The same trends were observed in the sagittal plane with higher percentage of signal changes and more average activation voxels, though no statistically significant difference compared with the control group.

Conclusions

Spinal SEEP fMRI is a powerful noninvasive method for the study of local neuronal activation in the human spinal cord, which may be of clinical value for evaluating the effectiveness of interventions aimed at promoting recovery of function using electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Klein JP, Tendi EA, Dib-Hajj SD, Fields RD, Waxman SG (2003) Patterned electrical activity modulates sodium channel expression in sensory neurons. J Neurosci Res 74:192–198. doi:10.1002/jnr.10768

    Article  CAS  PubMed  Google Scholar 

  2. Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 17:1256–1269. doi:10.1007/s00586-008-0729-3

    Article  Google Scholar 

  3. Domenech J, Garcia-Marti G, Marti-Bonmati L, Barrios C, Tormos JM, Pascual-Leone A (2011) Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 20:1069–1078. doi:10.1007/s00586-011-1776-8

    Article  Google Scholar 

  4. Konig A, Vitzthum HE (2001) Functional MRI of the spine: different patterns of positions of the forward flexed lumbar spine in healthy subjects. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 10:437–442

    Article  CAS  Google Scholar 

  5. Cadotte DW, Stroman PW, Mikulis D, Fehlings MG (2012) A systematic review of spinal fMRI research: outlining the elements of experimental design. J Neurosurg Spine 17:102–118. doi:10.3171/2012.5.aospine1278

    Article  PubMed  Google Scholar 

  6. Yoshizawa T, Nose T, Moore GJ, Sillerud LO (1996) Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage 4:174–182. doi:10.1006/nimg.1996.0068

    Article  CAS  PubMed  Google Scholar 

  7. Stroman PW, Coe BC, Munoz DP (2011) Influence of attention focus on neural activity in the human spinal cord during thermal sensory stimulation. Magn Reson Imaging 29:9–18. doi:10.1016/j.mri.2010.07.012

    Article  PubMed  Google Scholar 

  8. Rempe T, Wolff S, Riedel C, Baron R, Stroman PW, Jansen O, Gierthmuhlen J (2014) Spinal and supraspinal processing of thermal stimuli: an fMRI study. J Magn Reson Imaging JMRI. doi:10.1002/jmri.24627

    PubMed  Google Scholar 

  9. Bouwman CJ, Wilmink JT, Mess WH, Backes WH (2008) Spinal cord functional MRI at 3 T: gradient echo echo-planar imaging versus turbo spin echo. Neuroimage 43:288–296. doi:10.1016/j.neuroimage.2008.07.024

    Article  CAS  PubMed  Google Scholar 

  10. Figley CR, Stroman PW (2012) Measurement and characterization of the human spinal cord SEEP response using event-related spinal fMRI. Magn Reson Imaging 30:471–484. doi:10.1016/j.mri.2011.12.015

    Article  PubMed  Google Scholar 

  11. Morais DF, de Melo Neto JS, Meguins LC, Mussi SE, Filho JR, Tognola WA (2014) Clinical applicability of magnetic resonance imaging in acute spinal cord trauma. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 23:1457–1463. doi:10.1007/s00586-013-3047-3

    Google Scholar 

  12. Jiang Y, Wang H, Liu Z, Dong Y, Dong Y, Xiang X, Bai L, Tian J, Wu L, Han J, Cui C (2013) Manipulation of and sustained effects on the human brain induced by different modalities of acupuncture: an fMRI study. PLoS One 8:e66815. doi:10.1371/journal.pone.0066815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Endo T, Spenger C, Westman E, Tominaga T, Olson L (2008) Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI. Exp Neurol 209:155–160. doi:10.1016/j.expneurol.2007.09.017

    Article  PubMed  Google Scholar 

  14. Zhao F, Williams M, Welsh DC, Meng X, Ritter A, Abbadie C, Cook JJ, Reicin AS, Hargreaves R, Williams DS (2009) fMRI investigation of the effect of local and systemic lidocaine on noxious electrical stimulation-induced activation in spinal cord. Pain 145:110–119. doi:10.1016/j.pain.2009.05.026

    Article  CAS  PubMed  Google Scholar 

  15. Stroman PW, Kornelsen J, Bergman A, Krause V, Ethans K, Malisza KL, Tomanek B (2004) Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord 42:59–66. doi:10.1038/sj.sc.3101559

    Article  CAS  PubMed  Google Scholar 

  16. Stroman PW (2005) Magnetic resonance imaging of neuronal function in the spinal cord: spinal FMRI. Clin Med Res 3:146–156

    Article  PubMed  PubMed Central  Google Scholar 

  17. Majcher K, Tomanek B, Jasinski A, Foniok T, Stroman PW, Tuor UI, Kirk D, Hess G (2006) Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. Exp Neurol 197:458–464. doi:10.1016/j.expneurol.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  18. Lawrence J, Stroman PW, Malisza KL (2007) Comparison of functional activity in the rat cervical spinal cord during alpha-chloralose and halothane anesthesia. Neuroimage 34:1665–1672. doi:10.1016/j.neuroimage.2006.08.040

    Article  PubMed  Google Scholar 

  19. Xie CH, Kong KM, Guan JT, Chen YX, He JK, Qi WL, Wang XJ, Shen ZW, Wu RH (2009) SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping. Eur J Radiol 70:1–6. doi:10.1016/j.ejrad.2008.01.003

    Article  PubMed  Google Scholar 

  20. Harvey L, Graves D (2011) International Standards for the Neurological Classification of Spinal Cord Injury. J Physiother 57:129. doi:10.1016/S1836-9553(11)70027-3

    Article  PubMed  Google Scholar 

  21. Rao JS, Ma M, Zhao C, Zhang AF, Yang ZY, Liu Z, Li XG (2014) Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study. Magn Reson Imaging 32:482–486. doi:10.1002/nau.22596

    Article  PubMed  Google Scholar 

  22. Nash P, Wiley K, Brown J, Shinaman R, Ludlow D, Sawyer AM, Glover G, Mackey S (2013) Functional magnetic resonance imaging identifies somatotopic organization of nociception in the human spinal cord. Pain 154(6):776–781. doi:10.1016/j.pain.2012.11.008

    Article  PubMed  Google Scholar 

  23. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B (2002) Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes. Magn Reson Imaging 20:1–6

    Article  CAS  PubMed  Google Scholar 

  24. Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6:283–304

    Article  PubMed  Google Scholar 

  25. Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, Singh H, Modlesky CM (2015) Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord injury: a pilot study. Arch Phys Med Rehabil. doi:10.1016/j.apmr.2015.11.014

    Google Scholar 

  26. Ellingson BM, Salamon N, Holly LT (2015) Advances in MR imaging for cervical spondylotic myelopathy. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24(Suppl 2):197–208. doi:10.1007/s00586-013-2915-1

    Article  Google Scholar 

  27. Salkov M, Tsymbaliuk V, Dzyak L, Rodinsky A, Cherednichenko Y, Titov G (2015) New concept of pathogenesis of impaired circulation in traumatic cervical spinal cord injury and its impact on disease severity: case series of four patients. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. doi:10.1007/s00586-015-4015-x

    Google Scholar 

  28. Cordes D, Nandy RR, Schafer S, Wager TD (2014) Characterization and reduction of cardiac- and respiratory-induced noise as a function of the sampling rate (TR) in fMRI. Neuroimage 89:314–330. doi:10.1016/j.neuroimage.2013.12.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Patrick W. Stroman for technical assistance with the MR protocol, and thank Dr. Haiyun Xu, Dr. Phillip Zhe Sun, and Dr. Stanley Lin for their English language editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye-Xi Chen or Zhi-Wei Shen.

Ethics declarations

Conflict of interest

This manuscript is original, has not been submitted to and is not under consideration by another publication, has not been previously published in any language in any form, including electronic, and contains no disclosure of confidential information or authorship/patent application/funding source disputations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, XP., Chen, YX., Li, ZY. et al. Cervical spinal functional magnetic resonance imaging of the spinal cord injured patient during electrical stimulation. Eur Spine J 26, 71–77 (2017). https://doi.org/10.1007/s00586-016-4646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4646-6

Keywords

Navigation