Skip to main content
Log in

Effects of spine loading in a patient with post-decompression lumbar disc herniation: observations using an open weight-bearing MRI

  • Case Report
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Our objective was to use an open weight-bearing MRI to identify the effects of different loading conditions on the inter-vertebral anatomy of the lumbar spine in a post-discectomy recurrent lumbar disc herniation patient.

Methods

A 43-year-old male with a left-sided L5-S1 post-decompression re-herniation underwent MR imaging in three spine-loading conditions: (1) supine, (2) weight-bearing on standing (WB), and (3) WB with 10 % of body mass axial loading (WB + AL) (5 % through each shoulder). A segmentation-based proprietary software was used to calculate and compare linear dimensions, angles and cross sections across the lumbar spine.

Results

The L5 vertebrae showed a 4.6 mm posterior shift at L5-S1 in the supine position that changed to an anterior translation >2.0 mm on WB. The spinal canal sagittal thickness at L5-S1 reduced from supine to WB and WB + AL (13.4, 10.6, 9.5 mm) with corresponding increases of 2.4 and 3.5 mm in the L5-S1 disc protrusion with WB and WB + AL, respectively. Change from supine to WB and WB + AL altered the L5-S1 disc heights (10.2, 8.6, 7.0 mm), left L5-S1 foramen heights (12.9, 11.8, 10.9 mm), L5-S1 segmental angles (10.3°, 2.8°, 4.3°), sacral angles (38.5°, 38.3°, 40.3°), L1–L3–L5 angles (161.4°, 157.1°, 155.1°), and the dural sac cross sectional areas (149, 130, 131 mm2). Notably, the adjacent L4–L5 segment demonstrated a retro-listhesis >2.3 mm on WB.

Conclusion

We observed that with weight-bearing, measurements indicative of spinal canal narrowing could be detected. These findings suggest that further research is warranted to determine the potential utility of weight-bearing MRI in clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Cinotti G et al (1998) Ipsilateral recurrent lumbar disc herniation. A prospective, controlled study. J Bone Joint Surg Br 80(5):825–832

    Article  CAS  PubMed  Google Scholar 

  2. Peloquin JM et al (2014) Human L3L4 intervertebral disc mean 3D shape, modes of variation, and their relationship to degeneration. J Biomech 47(10):2452–2459

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carragee EJ et al (2000) The rates of false-positive lumbar discography in select patients without low back symptoms. Spine (Phila Pa 1976) 25(11):1373–1380 (discussion 1381)

    Article  CAS  Google Scholar 

  4. Connolly ES (1992) Surgery for recurrent lumbar disc herniation. Clin Neurosurg 39:211–216

    CAS  PubMed  Google Scholar 

  5. Kambin P et al (1995) Development of degenerative spondylosis of the lumbar spine after partial discectomy. Comparison of laminotomy, discectomy, and posterolateral discectomy. Spine (Phila Pa 1976) 20(5):599–607

    Article  CAS  Google Scholar 

  6. Suk KS et al (2001) Recurrent lumbar disc herniation: results of operative management. Spine (Phila Pa 1976) 26(6):672–676

    Article  CAS  Google Scholar 

  7. Erbayraktar S et al (2002) Outcome analysis of reoperations after lumbar discectomies: a report of 22 patients. Kobe J Med Sci 48(1–2):33–41

    PubMed  Google Scholar 

  8. Swartz KR, Trost GR (2003) Recurrent lumbar disc herniation. Neurosurg Focus 15(3):E10

    Article  PubMed  Google Scholar 

  9. Barrera MC et al (2001) Post-operative lumbar spine: comparative study of TSE T2 and turbo-FLAIR sequences vs contrast-enhanced SE T1. Clin Radiol 56(2):133–137

    Article  CAS  PubMed  Google Scholar 

  10. Graver V et al (1999) Seven-year clinical follow-up after lumbar disc surgery: results and predictors of outcome. Br J Neurosurg 13(2):178–184

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert JW et al (2010) Lumbar disk protrusion rates of symptomatic patients using magnetic resonance imaging. J Manip Physiol Ther 33(8):626–629

    Article  Google Scholar 

  12. Lurie JD et al (2013) Magnetic resonance imaging predictors of surgical outcome in patients with lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 38(14):1216–1225

    Article  Google Scholar 

  13. Bodiu A (2014) Diagnosis and operatory treatment of the patients with failed back surgery caused by herniated disk relapse. J Med Life 7(4):533–537

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Beastall J et al (2007) The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine (Phila Pa 1976) 32(6):685–690

    Article  Google Scholar 

  15. Nandakumar A et al (2010) The increase in dural sac area is maintained at 2 years after X-stop implantation for the treatment of spinal stenosis with no significant alteration in lumbar spine range of movement. Spine J 10(9):762–768

    Article  PubMed  Google Scholar 

  16. Siddiqui M et al (2006) Influence of X Stop on neural foramina and spinal canal area in spinal stenosis. Spine (Phila Pa 1976) 31(25):2958–2962

    Article  Google Scholar 

  17. Hirasawa Y et al (2007) Postural changes of the dural sac in the lumbar spines of asymptomatic individuals using positional stand-up magnetic resonance imaging. Spine 32(4):E136–E140

    Article  PubMed  Google Scholar 

  18. Meakin JR et al (2009) The intrinsic shape of the human lumbar spine in the supine, standing and sitting postures: characterization using an active shape model. J Anat 215(2):206–211

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meakin JR et al (2008) The effect of axial load on the sagittal plane curvature of the upright human spine in vivo. J Biomech 41(13):2850–2854

    Article  PubMed  Google Scholar 

  20. Ozawa H et al (2012) Dynamic changes in the dural sac cross-sectional area on axial loaded MR imaging: is there a difference between degenerative spondylolisthesis and spinal stenosis? AJNR Am J Neuroradiol 33(6):1191–1197

    Article  CAS  PubMed  Google Scholar 

  21. Hiwatashi A et al (2004) Axial loading during MR imaging can influence treatment decision for symptomatic spinal stenosis. AJNR Am J Neuroradiol 25(2):170–174

    PubMed  Google Scholar 

  22. Choi KC et al (2009) Dynamic lumbar spinal stenosis: the usefulness of axial loaded MRI in preoperative evaluation. J Korean Neurosurg Soc 46(3):265–268

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jinkins JR, Dworkin JS, Damadian RV (2005) Upright, weight-bearing, dynamic-kinetic MRI of the spine: initial results. Eur Radiol 15(9):1815–1825

    Article  PubMed  Google Scholar 

  24. Ferreiro Perez A et al (2007) Evaluation of intervertebral disc herniation and hypermobile intersegmental instability in symptomatic adult patients undergoing recumbent and upright MRI of the cervical or lumbosacral spines. Eur J Radiol 62(3):444–448

    Article  PubMed  Google Scholar 

  25. Weishaupt D, Boxheimer L (2003) Magnetic resonance imaging of the weight-bearing spine. Semin Musculoskelet Radiol 7(4):277–286

    Article  PubMed  Google Scholar 

  26. Kanno H et al (2015) Axial loading during magnetic resonance imaging in patients with lumbar spinal canal stenosis: does it reproduce the positional change of the dural sac detected by upright myelography? Spine (Phila Pa 1976) 37(16):E985–E992

    Article  Google Scholar 

  27. Szypryt EP et al (1988) Diagnosis of lumbar disc protrusion. A comparison between magnetic resonance imaging and radiculography. J Bone Joint Surg Br 70(5):717–722

    CAS  PubMed  Google Scholar 

  28. Danielson B, Willen J (2001) Axially loaded magnetic resonance image of the lumbar spine in asymptomatic individuals. Spine (Phila Pa 1976) 26(23):2601–2606

    Article  CAS  Google Scholar 

  29. Rodriguez-Soto AE et al (2013) Effect of load carriage on lumbar spine kinematics. Spine (Phila Pa 1976) 38(13):E783–E791

    Article  Google Scholar 

  30. Tarantino U et al (2013) Lumbar spine MRI in upright position for diagnosing acute and chronic low back pain: statistical analysis of morphological changes. J Orthop Traumatol 14(1):15–22

    Article  PubMed  Google Scholar 

  31. Karadimas EJ et al (2006) Positional MRI changes in supine versus sitting postures in patients with degenerative lumbar spine. J Spinal Disord Tech 19(7):495–500

    Article  PubMed  Google Scholar 

  32. Siddiqui M et al (2006) Effects of X-STOP device on sagittal lumbar spine kinematics in spinal stenosis. J Spinal Disord Tech 19(5):328–333

    Article  PubMed  Google Scholar 

  33. Siddiqui M et al (2005) The positional magnetic resonance imaging changes in the lumbar spine following insertion of a novel interspinous process distraction device. Spine (Phila Pa 1976) 30(23):2677–2682

    Article  Google Scholar 

  34. Weishaupt D et al (2000) Positional MR imaging of the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging? Radiology 215(1):247–253

    Article  CAS  PubMed  Google Scholar 

  35. Gallucci M et al (2007) Degenerative disease of the spine. Neuroimaging Clin N Am 17(1):87–103

    Article  PubMed  Google Scholar 

  36. Iguchi T et al (2004) Lumbar instability and clinical symptoms: which is the more critical factor for symptoms: sagittal translation or segment angulation? J Spinal Disord Tech 17(4):284–290

    Article  PubMed  Google Scholar 

  37. Johnsson KE et al (1989) Preoperative and postoperative instability in lumbar spinal stenosis. Spine 14(6):591–593

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Kumar Mahato.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, N.K., Sybert, D., Law, T. et al. Effects of spine loading in a patient with post-decompression lumbar disc herniation: observations using an open weight-bearing MRI. Eur Spine J 26 (Suppl 1), 17–23 (2017). https://doi.org/10.1007/s00586-016-4581-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4581-6

Keywords

Navigation