Skip to main content


Log in

A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript



Our study aims to describe the postural alignment of young asymptomatic subjects from head to feet from bi-planar standing full-body X-rays, providing database to compare to aging adults. Novelty resides in the inclusion of the head and lower limbs in the erected posture’s analysis.


For 69 young asymptomatic subjects (18–40 years old) 3D reconstructions of the head, spine, pelvis and lower limbs segments were performed from bi-planar full-body X-rays. Usual studied spinal, pelvic and lower limbs’ parameters were computed in 3D, sagittal and frontal planes of the patient. Relationships between these parameters were investigated. Inclinations of different lines were studied to characterize the erected posture.


Values found for spinal curvatures, pelvic parameters and lower limbs geometrical parameters agreed with the literature: thoracic kyphosis, lumbar lordosis, pelvic incidence, pelvic tilt and sagittal vertical axis were respectively in average of 26.9° (SD 7.2°), 30.5° (SD 7.5°), 51.0° (SD 9.4°), 11.1° (SD 5.6°) and −8.9 mm (SD 21.6 mm). The angle between the vertical and the line joining the most superior point of dentiform apophyse of C2 (OD) and the center of the bi-coxofemoral axis (HA) was the less variable one (SD 1.6°).


This study on 3D postural alignment reports the geometry of the spine, pelvis and lower limbs, of the young asymptomatic adult. The less variable angle is the one of the line OD–HA with the vertical, highlighting the vertical alignment of the head above the pelvis. This study provides a basis for future comparisons when investigating aging populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) Pediatric spine: principles and practices. Raven Press ltd, NY, pp 479–496

    Google Scholar 

  2. Vital JM, Senegas J (1986) Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane A study of the center of gravity of the head. Surg Radiol Anat 8:169–173

    Article  CAS  PubMed  Google Scholar 

  3. Barrey C, Roussouly P, Le Huec J-C et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:S834–S841. doi:10.1007/s00586-013-3030-z

    Article  PubMed  Google Scholar 

  4. Roudsari BS, Ebel BE, Corso PS et al (2005) The acute medical care costs of fall-related injuries among the US older adults. Injury 36:1316–1322. doi:10.1016/j.injury.2005.05.024

    Article  PubMed  Google Scholar 

  5. Diebo B, Ferrero E, Lafage R et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age dependent: an EOS analysis of Spino-pelvic mismatch. Spine (Phila Pa 1976). doi:10.1097/BRS.0000000000000844

    Google Scholar 

  6. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajnics P, Pomero V, Templier A et al (2001) Computer-assisted assessment of spinal sagittal plane radiographs. J Spinal Disord 14:135–142. doi:10.1097/00002517-200104000-00008

    Article  CAS  PubMed  Google Scholar 

  8. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi:10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  9. Boulay C, Tardieu C, Hecquet J et al (2006) Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J 15:415–422. doi:10.1007/s00586-005-0984-5

    Article  CAS  PubMed  Google Scholar 

  10. Steffen J, Obeid I, Aurouer N et al (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19:760–767

    Article  PubMed  Google Scholar 

  11. Sugrue PA, McClendon J, Smith TR et al (2013) Redefining global spinal balance: normative values of cranial center of mass from a prospective cohort of asymptomatic individuals. Spine (Phila Pa 1976) 38:484–489. doi:10.1097/BRS.0b013e318273a1c0

    Article  Google Scholar 

  12. Kim YB, Kim YJ, Ahn YJ et al (2014) A comparative analysis of sagittal spinopelvic alignment between young and old men without localized disc degeneration. Eur Spine J 23:1400–1406. doi:10.1007/s00586-014-3236-8

    Article  PubMed  Google Scholar 

  13. Le Huec JC, Demezon H, Aunoble S (2014) Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J 24:63–71. doi:10.1007/s00586-014-3632-0

    Article  PubMed  Google Scholar 

  14. Seber S, Hazer B, Köse N et al (2000) Rotational profile of the lower extremity and foot progression angle: computerized tomographic examination of 50 male adults. Arch Orthop Trauma Surg 120:255–258

    Article  CAS  PubMed  Google Scholar 

  15. Dubousset J, Charpak G, Skalli W et al (2010) EOS: a new imaging system with low dose radiation in standing position for spine and bone and joint disorders. J Musculoskelet Res 13:1–12

    Article  Google Scholar 

  16. Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2284–2289. doi:10.1097/01.brs.0000142224.46796.a7

    Article  Google Scholar 

  17. Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin 15:457–466. doi:10.1080/10255842.2010.540758

    Article  CAS  PubMed  Google Scholar 

  18. Mitton D, Deschênes S, Laporte S et al (2006) 3D reconstruction of the pelvis from biplanar radiography. Comput Methods Biomech Biomed Engin 9:1–5

    Article  CAS  PubMed  Google Scholar 

  19. Humbert L, de Guise JA, Godbout B et al (2009) Fast 3D reconstruction of the spine from biplanar radiography: a diagnosis tool for routine scoliosis diagnosis and research in biomechanics. Comput Methods Biomech Biomed Engin 12:151–163. doi:10.1080/10255840903081222

    Article  Google Scholar 

  20. Quijano S, Serrurier A, Aubert B et al (2013) Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med Eng Phys 35:1703–1712. doi:10.1016/j.medengphy.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  21. McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  22. Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance. J Am Stat Assoc 62:399–402

    Article  Google Scholar 

  23. Humbert L, Carlioz H, Baudoin A et al (2008) 3D evaluation of the acetabular coverage by biplanar Xrays or single anteroposterior Xray compared with CT-scan. Comput Methods Biomech Biomed Engin 11:257–262

    Article  PubMed  Google Scholar 

  24. Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11:80–87

    Article  CAS  PubMed  Google Scholar 

  25. Schwab F, Lafage V, Boyce R et al (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976) 31:E959–E967. doi:10.1097/01.brs.0000248126.96737.0f

    Article  Google Scholar 

  26. Stokes IAF, Aronson DD, Ronchetti PJ et al (1993) Reexamination of the Cobb and Ferguson angles: bigger is not always better. J Spinal Disord 6:333–338

    Article  CAS  PubMed  Google Scholar 

  27. Kolta S, Le Bras A, Mitton D et al (2005) Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device. Osteoporos Int 16:969–976. doi:10.1007/s00198-004-1782-3

    Article  CAS  PubMed  Google Scholar 

  28. Duval-Beaupère G, Legaye J (2004) Composante sagittale de la statique rachidienne. Rev Rhum 71:105–119. doi:10.1016/j.rhum.2003.09.018

    Article  Google Scholar 

  29. Ryan DJ, Protopsaltis TS, Ames CP et al (2014) T1 Pelvic Angle (TPA) Effectively evaluates sagittal deformity and assesses radiographical surgical outcomes longitudinally. Spine (Phila Pa 1976) 39:1203–1210. doi:10.1097/BRS.0000000000000382

    Article  Google Scholar 

  30. Gangnet N, Pomero V, Dumas R et al (2003) Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surg Radiol Anat 25:424–433. doi:10.1007/s00276-003-0154-6

    Article  CAS  PubMed  Google Scholar 

Download references


Authors thank the ParisTech BiomecAM chair program on subject-specific musculoskeletal modeling, and in particular COVEA and Société Générale.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Celia Amabile.

Ethics declarations

Conflict of interest

Wafa Skalli is the coinventor of the EOS system without direct/personal financial benefit. Her institution received financial support from the ParisTech Chair Program for research on musculoskeletal research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amabile, C., Pillet, H., Lafage, V. et al. A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J 25, 3666–3674 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: