European Spine Journal

, Volume 26, Issue 3, pp 799–805 | Cite as

Lumbar intervertebral disc allograft transplantation: long-term mobility and impact on the adjacent segments

  • Yong-Can Huang
  • Jun Xiao
  • William W. Lu
  • Victor Y. L. Leung
  • Yong Hu
  • Keith D. K. Luk
Original Article



Fresh-frozen intervertebral disc (IVD) allograft transplantation has been successfully performed in the human cervical spine. Whether this non-fusion technology could truly decrease adjacent segment disease is still unknown. This study evaluated the long-term mobility of the IVD-transplanted segment and the impact on the adjacent spinal segments in a goat model.


Twelve goats were used. IVD allograft transplantation was performed at lumbar L4/L5 in 5 goats; the other 7 goats were used as the untreated control (5) and for the supply of allografts (2). Post-operation lateral radiographs of the lumbar spine in the neutral, full-flexion and full-extension positions were taken at 1, 3, 6, 9 and 12 months. Disc height (DH) of the allograft and the adjacent levels was calculated and range of motion (ROM) was measured using the Cobb’s method. The anatomy of the adjacent discs was observed histologically.


DH of the transplanted segment was decreased significantly after 3 months but no further reduction was recorded until the final follow-up. No obvious alteration was seen in the ROM of the transplanted segment at different time points with the ROM at 12 months being comparable to that of the untreated control. The DH and ROM in the adjacent segments were well maintained during the whole observation period. At post-operative 12 months, the ROM of the adjacent levels was similar to that of the untreated control and the anatomical morphology was well preserved.


Lumbar IVD allograft transplantation in goats could restore the segmental mobility and did not negatively affect the adjacent segments after 12 months.


Intervertebral disc Allograft Transplantation Mobility Adjacent segments 


Compliance with ethical standards

Conflict of interest



  1. 1.
    Borenstein D (2013) Mechanical low back pain—a rheumatologist’s view. Nat Rev Rheumatol 9:643–653. doi: 10.1038/nrrheum.2013.133nrrheum.2013.133 CrossRefPubMedGoogle Scholar
  2. 2.
    Chou R, Baisden J, Carragee EJ, Resnick DK, Shaffer WO, Loeser JD (2009) Surgery for low back pain: a review of the evidence for an American Pain Society Clinical Practice Guideline. Spine (Phila Pa 1976) 34:1094–1109. doi: 10.1097/BRS.0b013e3181a105fc CrossRefGoogle Scholar
  3. 3.
    van den Eerenbeemt KD, Ostelo RW, van Royen BJ, Peul WC, van Tulder MW (2010) Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature. Eur Spine J 19:1262–1280. doi: 10.1007/s00586-010-1445-3 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ruan D, He Q, Ding Y, Hou L, Li J, Luk KD (2007) Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet 369:993–999. doi: 10.1016/S0140-6736(07)60496-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Ding Y, Ruan DK, He Q, Hou LS, Lin JN, Cui HP (2013) Imaging evaluation and relative significance in cases of cervical disc allografting: radiographic character following total disc transplantation. J Spinal Disord Tech. doi: 10.1097/BSD.0b013e318290fc41 PubMedGoogle Scholar
  6. 6.
    Lam SK, Xiao J, Ruan D, Ding Y, Lu WW, Luk KD (2012) The effect of remodeling on the kinematics of the malpositioned disc allograft transplantation. Spine (Phila Pa 1976) 37:E357–E366. doi: 10.1097/BRS.0b013e318232909d CrossRefGoogle Scholar
  7. 7.
    Harrop JS, Youssef JA, Maltenfort M, Vorwald P, Jabbour P, Bono CM, Goldfarb N, Vaccaro AR, Hilibrand AS (2008) Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine (Phila Pa 1976) 33:1701–1707. doi: 10.1097/BRS.0b013e31817bb956 CrossRefGoogle Scholar
  8. 8.
    Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A:1497–1503CrossRefPubMedGoogle Scholar
  9. 9.
    Hou Y, Liu Y, Yuan W, Wang X, Chen H, Yang L, Zhang Y (2014) Cervical kinematics and radiological changes after Discover artificial disc replacement versus fusion. Spine J 14:867–877. doi: 10.1016/j.spinee.2013.07.432 CrossRefPubMedGoogle Scholar
  10. 10.
    Burkus JK, Traynelis VC, Haid RW Jr, Mummaneni PV (2014) Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the Prestige prospective randomized controlled clinical trial: clinical article. J Neurosurg Spine 21:516–528. doi: 10.3171/2014.6.SPINE13996 CrossRefPubMedGoogle Scholar
  11. 11.
    Helgeson MD, Bevevino AJ, Hilibrand AS (2013) Update on the evidence for adjacent segment degeneration and disease. Spine J 13:342–351. doi: 10.1016/j.spinee.2012.12.009S1529-9430(13)00070-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Lund T, Oxland TR (2011) Adjacent level disk disease—is it really a fusion disease? Orthop Clin North Am 42:529–541. doi: 10.1016/j.ocl.2011.07.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Xiao J, Huang YC, Lam SK, Luk KD (2015) Surgical technique for lumbar intervertebral disc transplantation in a goat model. Eur Spine J 24:1951–1958. doi: 10.1007/s00586-014-3631-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Gunzburg R, Szpalski M, Callary SA, Colloca CJ, Kosmopoulos V, Harrison D, Moore RJ (2009) Effect of a novel interspinous implant on lumbar spinal range of motion. Eur Spine J 18:696–703. doi: 10.1007/s00586-009-0890-3 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976) 30:25–31. doi: 10.1097/01.brs.0000148002.68656.4d
  16. 16.
    Pfirrmann CW, Metzdorf A, Elfering A, Hodler J, Boos N (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Orthop Res 24:1086–1094. doi: 10.1002/jor.20113 CrossRefPubMedGoogle Scholar
  17. 17.
    Luk KD, Ruan DK, Lu DS, Fei ZQ (2003) Fresh frozen intervertebral disc allografting in a bipedal animal model. Spine (Phila Pa 1976) 28:864–869. doi: 10.1097/01.BRS.0000058710.01729.29 Google Scholar
  18. 18.
    Chan SC, Gantenbein-Ritter B, Leung VY, Chan D, Cheung KM, Ito K (2010) Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J 10:486–496. doi: 10.1016/j.spinee.2009.12.019 CrossRefPubMedGoogle Scholar
  19. 19.
    Chan SC, Lam S, Leung VY, Chan D, Luk KD, Cheung KM (2010) Minimizing cryopreservation-induced loss of disc cell activity for storage of whole intervertebral discs. Eur Cell Mater 19:273–283 (pii:vol019a26) CrossRefPubMedGoogle Scholar
  20. 20.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161CrossRefPubMedGoogle Scholar
  21. 21.
    Grunhagen T, Shirazi-Adl A, Fairbank JC, Urban JP (2011) Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 42:465–477. doi: 10.1016/j.ocl.2011.07.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Huang YC, Urban JP, Luk KD (2014) Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol 10:561–566. doi: 10.1038/nrrheum.2014.91nrrheum.2014.91 CrossRefPubMedGoogle Scholar
  23. 23.
    Luo J, Gong M, Huang S, Yu T, Zou X (2015) Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies. Arch Orthop Trauma Surg 135:155–160. doi: 10.1007/s00402-014-2125-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Hoogendoorn RJ, Helder MN, Wuisman PI, Bank RA, Everts VE, Smit TH (2008) Adjacent segment degeneration: observations in a goat spinal fusion study. Spine (Phila Pa 1976) 33:1337–1343. doi: 10.1097/BRS.0b013e318173438f CrossRefGoogle Scholar
  25. 25.
    Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11:137–144. doi: 10.1007/s005860100346 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19. doi: 10.1007/s00586-007-0414-y CrossRefPubMedGoogle Scholar
  27. 27.
    Reitmaier S, Schmidt H, Ihler R, Kocak T, Graf N, Ignatius A, Wilke HJ (2013) Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One 8:e69610. doi: 10.1371/journal.pone.0069610PONE-D-13-09319 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yong-Can Huang
    • 1
  • Jun Xiao
    • 2
  • William W. Lu
    • 1
  • Victor Y. L. Leung
    • 1
  • Yong Hu
    • 1
  • Keith D. K. Luk
    • 1
  1. 1.Department of Orthopaedics and TraumatologyThe University of Hong KongHong Kong SARChina
  2. 2.Department of Joint Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations