European Spine Journal

, Volume 26, Issue 3, pp 635–645 | Cite as

Radiographic measurement for transforaminal percutaneous endoscopic approach (PELD)

  • Yuvraj Hurday
  • Baoshan Xu
  • Lin Guo
  • Yi Cao
  • Yeda Wan
  • Hongfeng Jiang
  • Yue Liu
  • Qian Yang
  • Xinlong Ma
Original Article

Abstract

Objective

A radiographic study to analyze the working zone and relationship of the nerve root to their corresponding intervertebral disc for transforaminal percutaneous approaches.

Methods

100 MRIs of transverse and sagittal views of 37 males, 63 females (average age 45 years), 50 MRIs of coronal views of 22 males, 28 females (average age 42 years), and 100 X-rays, 46 males, 54 females (average age of 44 years) were used for image analysis. All radiologic measurements were obtained independently by two experienced radiologists. On sagittal plane, foraminal height, foraminal diameter, nerve root-disc distance and nerve root-pedicle distance were measured. On transverse plane, foraminal width, nerve root-disc distance, nerve root-facet distance and target angle (J°) were analyzed at the superior (s) and inferior (i) margin of the disc. On coronal plane, nerve root-disc distance and nerve root-pedicle distance were measured at the medial, middle and lateral borders of the pedicle.

Results

Sagittal plane; foraminal height and diameter decreased caudally. Transverse plane; foraminal width was larger at the superior margin of the disc. Nerve root-disc distance decreased caudally. The nerve root lied dorsal to the disc at L2–L3 and L3–L4, whereas at L4–L5 and L5–S1 it lied ventrally. Nerve root-facet distance was shortest at the superior margin. Target angles (Js°, Ji°) at L2–L3 and L3–L4 were wider at their superior margin than at their inferior margin. Coronal plane; nerve root-disc distance increased from L2–L3 to L5–S1 whereas nerve root-pedicle distances decreased, thus coursing more vertically.

Conclusions

At lower lumbar levels the exiting nerve root is at risks of injury. Hence, it is advised to enlarge the foramen for safe passage of endoscopic instruments and to minimize the possibility of nerve injury.

Keywords

Lumbar Disc herniation Percutaneous endoscopic lumbar discectomy (PELD) Transforaminal Kambin’s triangle Exiting nerve root 

Notes

Compliance with ethical standards

Conflict of interest

The study was not supported by any grant and the authors have no conflict of interest to declare.

References

  1. 1.
    Ahn Y (2012) Transforaminal percutaneous endoscopic lumbar discectomy: technical tips to prevent complications. Expert Rev Med Devices 9:361–366. doi: 10.1586/erd.12.23 CrossRefPubMedGoogle Scholar
  2. 2.
    Ahn Y, Lee SH, Lee JH, Kim JU, Liu WC (2009) Transforaminal percutaneous endoscopic lumbar discectomy for upper lumbar disc herniation: clinical outcome, prognostic factors, and technical consideration. Acta Neurochir (Wien) 151:199–206. doi: 10.1007/s00701-009-0204-x CrossRefGoogle Scholar
  3. 3.
    Ahn Y, Lee SH, Park WM, Lee HY, Shin SW, Kang HY (2004) Percutaneous endoscopic lumbar discectomy for recurrent disc herniation: surgical technique, outcome, and prognostic factors of 43 consecutive cases. Spine 29:E326–E332CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Hadidi MT, Abu-Ghaida JH, Badran DH, Al-Hadidi AM, Ramadan HN, Massad DF (2003) Magnetic resonance imaging of normal lumbar intervertebral foraminal height. Neurosciences (Riyadh, Saudi Arabia) 8:165–170Google Scholar
  5. 5.
    Arslan M, Comert A, Acar HI, Ozdemir M, Elhan A, Tekdemir I, Tubbs RS, Attar A, Ugur HC (2011) Neurovascular structures adjacent to the lumbar intervertebral discs: an anatomical study of their morphometry and relationships. J Neurosurg Spine 14:630–638. doi: 10.3171/2010.11.spine09149 CrossRefPubMedGoogle Scholar
  6. 6.
    Arslan M, Comert A, Acar HI, Ozdemir M, Elhan A, Tekdemir I, Tubbs RS, Ugur HC (2012) Nerve root to lumbar disc relationships at the intervertebral foramen from a surgical viewpoint: an anatomical study. Clin Anat (New York, NY) 25:218–223. doi: 10.1002/ca.21213 CrossRefGoogle Scholar
  7. 7.
    Birkenmaier C, Chiu J, Fontanella A, Leu H (2010) Guidelines for percutaneous endoscopic spine surgery. http://www.ismiss.com/5-0-Guidelines.html
  8. 8.
    Choi G, Modi HN, Prada N, Ahn TJ, Myung SH, Gang MS, Lee SH (2013) Clinical results of XMR-assisted percutaneous transforaminal endoscopic lumbar discectomy. J Orthop Surg Res 8:14. doi: 10.1186/1749-799x-8-14 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Choi I, Ahn JO, So WS, Lee SJ, Choi IJ, Kim H (2013) Exiting root injury in transforaminal endoscopic discectomy: preoperative image considerations for safety. Eur Spine J 22:2481–2487. doi: 10.1007/s00586-013-2849-7 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Civelek E, Solmaz I, Cansever T, Onal B, Kabatas S, Bolukbasi N, Sirin S, Kahraman S (2012) Radiological analysis of the triangular working zone during transforaminal endoscopic lumbar discectomy. Asian Spine J 6:98–104. doi: 10.4184/asj.2012.6.2.98 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hirano Y, Mizuno J, Takeda M, Itoh Y, Matsuoka H, Watanabe K (2012) Percutaneous endoscopic lumbar discectomy—early clinical experience. Neurol Med Chir 52:625–630CrossRefGoogle Scholar
  12. 12.
    Hoogland T, van den Brekel-Dijkstra K, Schubert M, Miklitz B (2008) Endoscopic transforaminal discectomy for recurrent lumbar disc herniation: a prospective, cohort evaluation of 262 consecutive cases. Spine 33:973–978. doi: 10.1097/BRS.0b013e31816c8ade CrossRefPubMedGoogle Scholar
  13. 13.
    Jasper GP, Francisco GM, Telfeian AE (2013) Endoscopic transforaminal discectomy for an extruded lumbar disc herniation. Pain Phys 16:E31–E35Google Scholar
  14. 14.
    Kostelic JK, Haughton VM, Sether LA (1991) Lumbar spinal nerves in the neural foramen: MR appearance. Radiology 178:837–839. doi: 10.1148/radiology.178.3.1994428 CrossRefPubMedGoogle Scholar
  15. 15.
    Lee S, Kim SK, Lee SH, Kim WJ, Choi WC, Choi G, Shin SW (2007) Percutaneous endoscopic lumbar discectomy for migrated disc herniation: classification of disc migration and surgical approaches. Eur Spine J 16:431–437. doi: 10.1007/s00586-006-0219-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Lee SH, Kang HS, Choi G, Kong BJ, Ahn Y, Kim JS, Lee HY (2010) Foraminoplastic ventral epidural approach for removal of extruded herniated fragment at the L5-S1 level. Neurol Med Chir 50:1074–1078CrossRefGoogle Scholar
  17. 17.
    Loukas M, Louis RG Jr, Childs RS (2006) Anatomical examination of the recurrent artery of Heubner. Clin Anat (New York, NY) 19:25–31. doi: 10.1002/ca.20229 CrossRefGoogle Scholar
  18. 18.
    Luhmann D, Burkhardt-Hammer T, Borowski C, Raspe H (2005) Minimally invasive surgical procedures for the treatment of lumbar disc herniation. GMS Health Technology Assessment 1:Doc07Google Scholar
  19. 19.
    Min JH, Kang SH, Lee JB, Cho TH, Suh JK, Rhyu IJ (2005) Morphometric analysis of the working zone for endoscopic lumbar discectomy. J Spinal Disord Tech 18:132–135CrossRefPubMedGoogle Scholar
  20. 20.
    Mirkovic SR, Schwartz DG, Glazier KD (1995) Anatomic considerations in lumbar posterolateral percutaneous procedures. Spine 20:1965–1971CrossRefPubMedGoogle Scholar
  21. 21.
    Nellensteijn J, Ostelo R, Bartels R, Peul W, van Royen B, van Tulder M (2010) Transforaminal endoscopic surgery for symptomatic lumbar disc herniations: a systematic review of the literature. Eur Spine J 19:181–204. doi: 10.1007/s00586-009-1155-x CrossRefPubMedGoogle Scholar
  22. 22.
    Quester R, Schroder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75:81–89CrossRefPubMedGoogle Scholar
  23. 23.
    Schubert M, Hoogland T (2005) Endoscopic transforaminal nucleotomy with foraminoplasty for lumbar disk herniation. Operative Orthopadie und Traumatologie 17:641–661. doi: 10.1007/s00064-005-1156-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Suh SW, Shingade VU, Lee SH, Bae JH, Park CE, Song JY (2005) Origin of lumbar spinal roots and their relationship to intervertebral discs: a cadaver and radiological study. J Bone Joint Surg Br 87:518–522. doi: 10.1302/0301-620x.87b4.15529 CrossRefPubMedGoogle Scholar
  25. 25.
    Thongtrangan I, Le H, Park J, Kim DH (2004) Minimally invasive spinal surgery: a historical perspective. Neurosurg Focus 16:E13CrossRefPubMedGoogle Scholar
  26. 26.
    Torun F, Dolgun H, Tuna H, Attar A, Uz A, Erdem A (2006) Morphometric analysis of the roots and neural foramina of the lumbar vertebrae. Surg Neurol 66:148–151. doi: 10.1016/j.surneu.2006.02.041 (discussion 151) CrossRefPubMedGoogle Scholar
  27. 27.
    Tsou PM, Yeung AT (2002) Transforaminal endoscopic decompression for radiculopathy secondary to intracanal noncontained lumbar disc herniations: outcome and technique. Spine J 2:41–48CrossRefPubMedGoogle Scholar
  28. 28.
    Tzaan WC (2007) Transforaminal percutaneous endoscopic lumbar discectomy. Chang Gung Med J 30:226–234PubMedGoogle Scholar
  29. 29.
    Xin G, Shi-Sheng H, Hai-Long Z (2013) Morphometric analysis of the YESS and TESSYS techniques of percutaneous transforaminal endoscopic lumbar discectomy. Clin Anat (New York, NY) 26:728–734. doi: 10.1002/ca.22286 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yuvraj Hurday
    • 1
  • Baoshan Xu
    • 1
  • Lin Guo
    • 2
  • Yi Cao
    • 2
  • Yeda Wan
    • 2
  • Hongfeng Jiang
    • 1
  • Yue Liu
    • 1
  • Qian Yang
    • 1
  • Xinlong Ma
    • 1
  1. 1.Department of Minimal Invasive Spine SurgeryTianjin HospitalTianjinChina
  2. 2.Department of RadiologyTianjin HospitalTianjinChina

Personalised recommendations