Skip to main content

Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis

Abstract

Purpose

Osteopenia has been widely reported in about 30 % of girls with adolescent idiopathic scoliosis (AIS). However, the bone quality profile of the 70 % non-osteopenic AIS defined by areal bone mineral density (BMD) with conventional dual-energy X-ray absorptiometry (DXA) has not been adequately studied. Our purpose was to verify whether abnormal volumetric BMD (vBMD) and bone structure (morphometry and micro-architecture) also existed in the non-osteopenic AIS when compared with matched controls using both DXA and high-resolution peripheral computed tomography (HR-pQCT).

Methods

This was a case–control cross-sectional study. 257 AIS girls with a mean age of 12.7 (SD = 0.8) years old and 187 age- and gender-matched normal controls with an average age of 12.9 (SD = 0.5) years old were included. Areal BMD (aBMD) and bone quality were measured with standard DXA and HR-pQCT, respectively. The parameters of HR-pQCT could be categorized as bone morphometry, vBMD and bone micro-architecture. The results were compared between the osteopenic AIS and osteopenic control, and between the non-osteopenic AIS and non-osteopenic control.

Results

In addition to the lower aBMD and vBMD, osteopenic AIS showed significantly greater cortical perimeter and trabecular area than the osteopenic control even after adjustments of age (P < 0.05). Non-osteopenic AIS also showed significantly lower aBMD together with lower cortical area, thickness and vBMD than the non-osteopenic control (P < 0.05). After adjustments of age, cortical area and vBMD, and trabecular number and separation continued to show statistical significance (P < 0.05). Both the osteopenic and non-osteopenic AIS subgroups revealed significant abnormal bone quality parameters from that in the control group after adjustments of age and aBMD with multi-linear regression analysis (P < 0.05).

Conclusions

The present study specifically defined the abnormal profile of bone quality in the osteopenic and non-osteopenic AIS for the first time. Both the osteopenic and non-osteopenic AIS were likely to have relatively lower bone mineral status and abnormal bone morphometry, micro-architecture and volumetric density profile compared with their normal matched controls. The observed abnormalities were suggestive of decreased endocortical bone apposition or active endocortical resorption that could affect the mechanical bone strength in AIS. The underlying pathomechanism might be attributed to abnormal bone modeling/remodeling that could be associated with the etiopathogenesis of AIS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet 371:1527–1537. doi:10.1016/S0140-6736(08)60658-3

    Article  PubMed  Google Scholar 

  2. Yim AP, Yeung HY, Hung VW, Lee KM, Lam TP, Ng BK, Qiu Y, Cheng JC (2012) Abnormal skeletal growth patterns in adolescent idiopathic scoliosis—a longitudinal study until skeletal maturity. Spine (Phila Pa 1976) 37:E1148–E1154. doi:10.1097/BRS.0b013e31825c036d

    Article  Google Scholar 

  3. Yu WS, Chan KY, Yu FW, Ng BK, Lee KM, Qin L, Lam TP, Cheng JC (2014) Bone structural and mechanical indices in adolescent idiopathic scoliosis evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bone 61:109–115. doi:10.1016/j.bone.2013.12.033

    Article  PubMed  Google Scholar 

  4. Will RE, Stokes IA, Qiu X, Walker MR, Sanders JO (2009) Cobb angle progression in adolescent scoliosis begins at the intervertebral disc. Spine (Phila Pa 1976) 34:2782–2786. doi:10.1097/BRS.0b013e3181c11853

    Article  Google Scholar 

  5. Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976) 24:1218–1222

    CAS  Article  Google Scholar 

  6. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, Ng BK, Cheng JC (2005) Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int 16:1924–1932. doi:10.1007/s00198-005-1964-7

    Article  PubMed  Google Scholar 

  7. Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK, Guo X, Lee KM, Cheng JC (2005) Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 87:2709–2716. doi:10.2106/JBJS.D.02782

    CAS  PubMed  Google Scholar 

  8. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261. doi:10.1056/NEJMra053077

    CAS  Article  PubMed  Google Scholar 

  9. Yeung HY, Qin L, Hung VW, Lee KM, Guo X, Ng BW, Cheng JC (2006) Lower degree of mineralization found in cortical bone of adolescent idiopathic scoliosis (AIS). Stud Health Technol Inform 123:599–604

    CAS  PubMed  Google Scholar 

  10. Yung PS, Lai YM, Tung PY, Tsui HT, Wong CK, Hung VW, Qin L (2005) Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br J Sports Med 39:547–551. doi:10.1136/bjsm.2004.014621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Cheuk KY, Zhu TY, Yu FW, Hung VW, Lee KM, Qin L, Cheng JC, Lam TP (2015) Abnormal bone mechanical and structural properties in adolescent idiopathic scoliosis: a study with finite element analysis and structural model index. Calcif Tissue Int. doi:10.1007/s00223-015-0025-2

    PubMed  Google Scholar 

  12. Yu WS, Chan KY, Yu FW, Yeung HY, Ng BK, Lee KM, Lam TP, Cheng JC (2013) Abnormal bone quality versus low bone mineral density in adolescent idiopathic scoliosis: a case-control study with in vivo high-resolution peripheral quantitative computed tomography. Spine J 13:1493–1499. doi:10.1016/j.spinee.2013.05.018

    Article  PubMed  Google Scholar 

  13. Kono K, Asazuma T, Suzuki N, Ono T (2000) Body height correction in scoliosis patients for pulmonary function test. J Orthop Surg (Hong Kong) 8:19–26

    CAS  Article  Google Scholar 

  14. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337

    CAS  PubMed  Google Scholar 

  15. Goldberg CJ, Dowling FE, Fogarty EE (1993) Adolescent idiopathic scoliosis—early menarche, normal growth. Spine (Phila Pa 1976) 18:529–535

    CAS  Article  Google Scholar 

  16. Seeman E (2009) Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:219–233. doi:10.1615/CritRevEukarGeneExpr.v19.i3.40

    CAS  Article  PubMed  Google Scholar 

  17. Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4:382–398. doi:10.1007/BF01622201

    CAS  Article  PubMed  Google Scholar 

  18. Parfitt AM, Travers R, Rauch F, Glorieux FH (2000) Structural and cellular changes during bone growth in healthy children. Bone 27:487–494. doi:10.1016/S8756-3282(00)00353-7

    CAS  Article  PubMed  Google Scholar 

  19. Seeman E (2008) Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology 47(Suppl 4):iv2–iv8. doi:10.1093/rheumatology/ken177

    PubMed  PubMed Central  Google Scholar 

  20. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280. doi:10.1359/jbmr.2002.17.12.2274

    CAS  Article  PubMed  Google Scholar 

  21. Kim BT, Mosekilde L, Duan Y, Zhang XZ, Tornvig L, Thomsen JS, Seeman E (2003) The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 18:150–155. doi:10.1359/jbmr.2003.18.1.150

    CAS  Article  PubMed  Google Scholar 

  22. Yeh JK, Chen MM, Aloia JF (1996) Ovariectomy-induced high turnover in cortical bone is dependent on pituitary hormone in rats. Bone 18:443–450. doi:10.1016/8756-3282(96)00045-2

    CAS  Article  PubMed  Google Scholar 

  23. Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323. doi:10.1056/NEJMp038101

    Article  PubMed  Google Scholar 

  24. Cassidy JT (1999) Osteopenia and osteoporosis in children. Clin Exp Rheumatol 17:245–250

    CAS  PubMed  Google Scholar 

  25. Machida M, Dubousset J, Yamada T, Kimura J (2009) Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression—a prospective study. J Pineal Res 46:344–348. doi:10.1111/j.1600-079X.2009.00669.x

    CAS  Article  PubMed  Google Scholar 

  26. Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, Labelle H, Poitras B, Rivard CH, Grimard G (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:1772–1781

    Article  Google Scholar 

  27. Suh KT, Lee SS, Hwang SH, Kim SJ, Lee JS (2007) Elevated soluble receptor activator of nuclear factor-kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 16:1563–1569. doi:10.1007/s00586-007-0390-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X (2000) Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 15:1587–1595. doi:10.1359/jbmr.2000.15.8.1587

    CAS  Article  PubMed  Google Scholar 

  29. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Ho SC, Lau J, Cheng JC (2005) Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int 16:1024–1035. doi:10.1007/s00198-004-1792-1

    CAS  Article  PubMed  Google Scholar 

  30. Society C (2000) Chinese Dietary Reference Intakes. Chinese Light Industry Press, Beijing

    Google Scholar 

  31. Seeman E (2008) Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 26:1–8. doi:10.1007/s00774-007-0793-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by Research Grants Council of the Hong Kong S.A.R., China (Project no: 463113 and 468809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Chun-Yiu Cheng.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, ZW., Lee, W.YW., Lam, TP. et al. Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis. Eur Spine J 26, 1586–1594 (2017). https://doi.org/10.1007/s00586-016-4422-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4422-7

Keywords

  • Adolescent idiopathic scoliosis
  • Bone mineral density
  • Bone structure
  • Osteopenia
  • Bone quality