Skip to main content
Log in

Trabecular metal spacers as standalone or with pedicle screw augmentation, in posterior lumbar interbody fusion: a prospective, randomized controlled trial

European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

This prospective randomized comparative trial compared radiological and clinical outcome of Trabecular Metal™ (TM) spacers in PLIF, used as standalone (SA) devices, to TM spacers in PLIF with pedicle screw fixation (PF), in patients with single-level degenerative disc disease (DDD).

Methods

Patients (n = 80) with chronic low back pain and single-level degenerative disc were randomly assigned to the SA PLIF (n = 40) or PLIF with PF (n = 40). The primary radiological outcome was the evaluation of a long-term (±6 years; range 6.0–7.7 years) stable construct measured by dynamic X-rays. CT scan does not allow judging the bony bridging between vertebrae, because of Tantalum artefacts. The clinical evaluation (6 weeks, 6, 12 and 24 months) consisted of the Oswestry Disability Index (ODI) score, intensity of low back pain (Visual Analogue Scale) and quality of life (Short Form-36).

Results

At 6-year follow-up, X-rays showed a stable construct in 94 % of patients treated by SA TM-500 spacers and in 97 % of those with additional PF. Neither subsidence nor migration was observed in either the SA or the PF group. The average improvement in ODI scores at 24-month clinical follow-up was 14.4 and 13.8 for the SA and PF group, respectively. The VAS score showed an average improvement of 6.4 (SA) and 6.7 (PF), 2 years after implantation. No significant difference between groups was observed at all the evaluation points.

Conclusion

In this study, TM spacers were found to provide a solid construct at more than 6-year follow-up after PLIF for DDD both with and without additional pedicle fixation. The clinical, but also radiological results were not significantly different between both cohorts. Future studies focusing on the differences of SA and PF at L4/5 level should be powered to study differences in post-surgery stability at the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Greiner-Perth R, Boehm H, Allam Y, Elsaghir H, Franke J (2004) Reoperation rate after instrumented posterior lumbar interbody fusion: a report on 1680 cases. Spine (Phila Pa 1976) 29:2516–2520

  2. Satoh I, Yonenobu K, Hosono N, Ohwada T, Fuji T, Yoshikawa H (2006) Indication of posterior lumbar interbody fusion for lumbar disc herniation. J Spinal Disord Tech 19:104–108. doi:10.1097/01.bsd.0000180991.98751.95

    Article  PubMed  Google Scholar 

  3. Trouillier H, Birkenmaier C, Rauch A, Weiler C, Kauschke T, Refior HJ (2006) Posterior lumbar interbody fusion (PLIF) with cages and local bone graft in the treatment of spinal stenosis. Acta Orthop Belg 72:460–466

    PubMed  Google Scholar 

  4. Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM (2000) Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976) 25:1437–1446

  5. Brantigan JW, Neidre A, Toohey JS (2004) The Lumbar I/F Cage for posterior lumbar interbody fusion with the variable screw placement system: 10-year results of a Food and Drug Administration clinical trial. Spine J 4:681–688. doi:10.1016/j.spinee.2004.05.253

    Article  PubMed  Google Scholar 

  6. Fogel GR, Toohey JS, Neidre A, Brantigan JW (2006) Outcomes of L1–L2 posterior lumbar interbody fusion with the Lumbar I/F cage and the variable screw placement system: reporting unexpected poor fusion results at L1–L2. Spine J 6:421–427. doi:10.1016/j.spinee.2005.09.011

    Article  PubMed  Google Scholar 

  7. Tullberg T, Brandt B, Rydberg J, Fritzell P (1996) Fusion rate after posterior lumbar interbody fusion with carbon fiber implant: 1-year follow-up of 51 patients. Eur Spine J 5:178–182

    Article  CAS  PubMed  Google Scholar 

  8. Hitchon PW, Goel V, Rogge T, Dooris A, Drake J, Torner J (2000) Spinal stability with anterior or posterior ray threaded fusion cages. J Neurosurg 93:102–108

    CAS  PubMed  Google Scholar 

  9. Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9(Suppl 1):S95–S101

    Article  PubMed  Google Scholar 

  10. Kuslich SD, Ulstrom CL, Griffith SL, Ahern JW, Dowdle JD (1998) The Bagby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial. Spine (Phila Pa 1976) 23:1267–1278 (discussion 1279)

  11. Ray CD (1997) Threaded titanium cages for lumbar interbody fusions. Spine (Phila Pa 1976) 22:667-679; discussion 679-680

  12. Black J (1994) Biological performance of tantalum. Clin Mater 16:167–173

    Article  CAS  PubMed  Google Scholar 

  13. Sinclair SK, Konz GJ, Dawson JM, Epperson RT, Bloebaum RD (2012) Host bone response to polyetheretherketone versus porous tantalum implants for cervical spinal fusion in a goat model. Spine (Phila Pa 1976) 37:E571–E580. doi:10.1097/BRS.0b013e318240f981

  14. Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58:180–187

    Article  CAS  PubMed  Google Scholar 

  15. Brown TD, Heiner AD, Poggie RA, Fitzpatrick DC, Ahn PB, Zhang Y (1999) Interfacial frictional behavior: cancellous bone, cortical bone, and anovel porous tantalum biomaterial. J Musculoskelet Res 03:245–251. doi:10.1142/S0218957799000269

    Article  Google Scholar 

  16. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Jt Surg Br 81:907–914

    Article  CAS  Google Scholar 

  17. Hacking SA, Bobyn JD, Toh K, Tanzer M, Krygier JJ (2000) Fibrous tissue ingrowth and attachment to porous tantalum. J Biomed Mater Res 52:631–638

    Article  CAS  PubMed  Google Scholar 

  18. Shimko DA, Shimko VF, Sander EA, Dickson KF, Nauman EA (2005) Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater 73:315–324. doi:10.1002/jbm.b.30229

    Article  PubMed  Google Scholar 

  19. Sidhu KS, Prochnow TD, Schmitt P, Fischgrund J, Weisbrode S, Herkowitz HN (2001) Anterior cervical interbody fusion with rhBMP-2 and tantalum in a goat model. Spine J 1:331–340

    Article  CAS  PubMed  Google Scholar 

  20. Zou X, Xue Q, Li H, Bunger M, Lind M, Bunge C (2003) Effect of alendronate on bone ingrowth into porous tantalum and carbon fiber interbody devices: an experimental study on spinal fusion in pigs. Acta Orthop Scand 74:596–603. doi:10.1080/00016470310018027

    Article  PubMed  Google Scholar 

  21. Christie MJ (2002) Clinical applications of trabecular metal. Am J Orthop (Belle Mead NJ) 31:219–220

    Google Scholar 

  22. Pandit H, Aslam N, Pirpiris M, Jinnah R (2006) Total knee arthroplasty: the future. J Surg Orthop Adv 15:79–85

    PubMed  Google Scholar 

  23. Ries MD, Cabalo A, Bozic KJ, Anderson M (2006) Porous tantalum patellar augmentation: the importance of residual bone stock. Clin Orthop Relat Res 452:166–170. doi:10.1097/01.blo.0000229359.27491.9f

    Article  PubMed  Google Scholar 

  24. Stiehl JB (2005) Trabecular metal in hip reconstructive surgery. Orthopedics 28:662–670

    PubMed  Google Scholar 

  25. Sporer SM, Paprosky WG (2006) Acetabular revision using a trabecular metal acetabular component for severe acetabular bone loss associated with a pelvic discontinuity. J Arthroplasty 21:87–90. doi:10.1016/j.arth.2006.05.015

    Article  PubMed  Google Scholar 

  26. Sporer SM, Paprosky WG (2006) The use of a trabecular metal acetabular component and trabecular metal augment for severe acetabular defects. J Arthroplasty 21:83–86. doi:10.1016/j.arth.2006.05.008

    Article  PubMed  Google Scholar 

  27. Matejka J, Zeman J, Belatka J (2009) Mid-term results of 360-degree lumbar spondylodesis with the use of a tantalum implant for disc replacement. Acta Chir Orthop Traumatol Cech 76:388–393

    CAS  PubMed  Google Scholar 

  28. Fernandez-Fairen M, Murcia A, Torres A, Hernandez-Vaquero D, Menzie AM (2012) Is anterior cervical fusion with a porous tantalum implant a cost-effective method to treat cervical disc disease with radiculopathy? Spine (Phila Pa 1976) 37:1734–1741. doi:10.1097/BRS.0b013e318255a184

  29. Lequin MB, Verbaan D, Bouma GJ (2014) Posterior lumbar interbody fusion with stand-alone trabecular metal cages for repeatedly recurrent lumbar disc herniation and back pain. J Neurosurg Spine 20:617–622. doi:10.3171/2014.2.SPINE13548

    Article  PubMed  Google Scholar 

  30. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    Article  CAS  PubMed  Google Scholar 

  31. McAfee PC, Boden SD, Brantigan JW, Fraser RD, Kuslich SD, Oxland TR, Panjabi MM, Ray CD, Zdeblick TA (2001) Symposium: a critical discrepancy-a criteria of successful arthrodesis following interbody spinal fusions. Spine (Phila Pa 1976) 26:320–334

  32. Fairbank JC, Pynsent PB (2000) The Oswestry Disability Index. Spine 25:2940–2952 (discussion 2952)

  33. Ware JE Jr (2000) SF-36 health survey update. Spine (Phila Pa 1976) 25:3130–3139

  34. Kasliwal MK, Baskin DS, Traynelis VC (2013) Failure of porous tantalum cervical interbody fusion devices: two-year results from a prospective, randomized, multicenter clinical study. J Spinal Disord Tech 26:239–245

    Article  PubMed  Google Scholar 

  35. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429

    Article  PubMed  Google Scholar 

  36. Ito Z, Matsuyama Y, Sakai Y, Imagama S, Wakao N, Ando K, Hirano K, Tauchi R, Muramoto A, Matsui H, Matsumoto T, Kanemura T, Yoshida G, Ishikawa Y, Ishiguro N (2010) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine (Phila Pa 1976) 35:E1101–1105

  37. Lee JH, Jeon DW, Lee SJ, Chang BS, Lee CK (2010) Fusion rates and subsidence of morselized local bone grafted in titanium cages in posterior lumbar interbody fusion using quantitative three-dimensional computed tomography scans. Spine (Phila Pa 1976) 35:1460–1465

  38. Kai Y, Oyama M, Morooka M (2004) Posterior lumbar interbody fusion using local facet joint autograft and pedicle screw fixation. Spine (Phila Pa 1976) 29:41–46

  39. Lee JH, Park JW, Lee HS (2011) Fusion rates of a morselized local bone graft in polyetheretherketone cages in posterior lumbar interbody fusion by quantitative analysis using consecutive three-dimensional computed tomography scans. Spine J 11:647–653

    Article  PubMed  Google Scholar 

  40. Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT (1997) 1997 Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (Phila Pa 1976) 22:2807–2812

  41. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine (Phila Pa 1976) 18:983–991

  42. Goldstein C, Drew B (2011) When is a spine fused? Injury 42:306–313

    Article  PubMed  Google Scholar 

  43. McAfee PC, Cunningham BW, Lee GA, Orbegoso CM, Haggerty CJ, Fedder IL, Griffith SL (1999) Revision strategies for salvaging or improving failed cylindrical cages. Spine (Phila Pa 1976) 24:2147–2153

  44. Wu M, Wang S, Driscoll SJ, Cha TD, Wood KB, Li G (2014) Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment. Eur Spine J 23:2350–2358. doi:10.1007/s00586-014-3316-9

    Article  PubMed  Google Scholar 

  45. Park JH, Roh SW (2011) Long-term clinical and radiological outcomes following stand-alone PLIF surgery using expandable cylindrical threaded cages in patients with degenerative lumbar spine disease. Acta Neurochir (Wien) 153:1409–1416 (discussion 1416)

  46. Tsantrizos A, Baramki HG, Zeidman S, Steffen T (2000) Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine (Phila Pa 1976) 25:1899–1907

  47. Babu MA, Coumans JV, Carter BS, Taylor WR, Kasper EM, Roitberg BZ, Krauss WE, Chen CC (2011) A review of lumbar spinal instrumentation: evidence and controversy. J Neurol Neurosurg Psychiatry 82:948–951

    Article  PubMed  Google Scholar 

  48. Phillips FM, Slosar PJ, Youssef JA, Andersson G, Papatheofanis F (2013) Lumbar spine fusion for chronic low back pain due to degenerative disc disease: a systematic review. Spine (Phila Pa 1976) 38:E409–E422

  49. Gornet MF, Burkus JK, Dryer RF, Peloza JH (2011) Lumbar disc arthroplasty with Maverick disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. Spine (Phila Pa 1976) 36:E1600–E1611. doi:10.1097/BRS.0b013e318217668f

  50. Costa F, Sassi M, Ortolina A, Cardia A, Assietti R, Zerbi A, Lorenzetti M, Galbusera F, Fornari M (2011) Stand-alone cage for posterior lumbar interbody fusion in the treatment of high-degree degenerative disc disease: design of a new device for an “old” technique. A prospective study on a series of 116 patients. Eur Spine J 20(Suppl 1):S46–S56

  51. Dagenais S, Caro J, Haldeman S (2008) A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J 8:8–20

    Article  PubMed  Google Scholar 

  52. Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine (Phila Pa 1976) 37:E1580–E1587. doi:10.1097/BRS.0b013e318271b1fa

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Van de Kelft.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Kelft, E., Van Goethem, J. Trabecular metal spacers as standalone or with pedicle screw augmentation, in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Eur Spine J 24, 2597–2606 (2015). https://doi.org/10.1007/s00586-015-4229-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4229-y

Keywords

Navigation