European Spine Journal

, Volume 26, Issue 3, pp 671–678 | Cite as

Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spondylolisthesis

  • Jun Sato
  • Seiji Ohtori
  • Sumihisa Orita
  • Kazuyo Yamauchi
  • Yawara Eguchi
  • Nobuyasu Ochiai
  • Kazuki Kuniyoshi
  • Yasuchika Aoki
  • Junichi Nakamura
  • Masayuki Miyagi
  • Miyako Suzuki
  • Gou Kubota
  • Kazuhide Inage
  • Takeshi Sainoh
  • Kazuki Fujimoto
  • Yasuhiro Shiga
  • Koki Abe
  • Hiroto Kanamoto
  • Gen Inoue
  • Kazuhisa Takahashi
Original Article

Abstract

Purpose

Extreme lateral interbody fusion provides minimally invasive treatment of spinal deformity, but complications including nerve and psoas muscle injury have been noted. To avoid nerve injury, mini-open anterior retroperitoneal lumbar interbody fusion methods using an approach between the aorta and psoas, such as oblique lumbar interbody fusion (OLIF) have been applied. OLIF with percutaneous pedicle screws without posterior decompression can indirectly decompress the spinal canal in lumbar degenerated spondylolisthesis. In the current study, we examined the radiographic and clinical efficacy of OLIF for lumbar degenerated spondylolisthesis.

Methods

We assessed 20 patients with lumbar degenerated spondylolisthesis who underwent OLIF and percutaneous pedicle screw fixation without posterior laminectomy. MR and CT images and clinical symptoms were evaluated before and 6 months after surgery. Cross sections of the spinal canal were evaluated with MRI, and disk height, cross-sectional areas of intervertebral foramina, and degree of upper vertebral slip were evaluated with CT. Clinical symptoms including low back pain, leg pain, and lower extremity numbness were evaluated using a visual analog scale and the Oswestry Disability Index before and 6 months after surgery.

Results

After surgery, significant increases in axial and sagittal spinal canal diameter (12 and 32 %), spinal canal area (19 %), disk height (61 %), and intervertebral foramen areas (21 % on the right side, 39 % on the left), and significant decrease of upper vertebral slip (−9 %) were found (P < 0.05). Low back pain, leg pain, and lower extremity numbness were significantly reduced compared with before surgery (P < 0.05).

Conclusions

Significant improvements in disk height and spinal canal area were found after surgery. Bulging of disks was reduced through correction, and stretching the yellow ligament may have decompressed the spinal canal. Lumbar anterolateral fusion without laminectomy may be useful for lumbar spondylolisthesis with back and leg symptoms.

Keywords

Oblique lateral interbody fusion Lumbar Spondylolisthesis Decompress Surgery 

Notes

Compliance with ethical standards

Conflict of interest

The author declares no conflicts of interest with respect to the authorship and publication of this article.

References

  1. 1.
    Chastain CA, Eck JC, Hodges SD et al (2007) Transforaminal lumbar interbody fusion: a retrospective study of long-term pain relief and fusion outcomes. Orthopedics 30:389–392PubMedGoogle Scholar
  2. 2.
    Gill K, Blumenthal SL (1993) Posterior lumbar interbody fusion. A 2-year follow-up of 238 patients. Acta Orthop Scand Suppl 251:108–110CrossRefPubMedGoogle Scholar
  3. 3.
    Ishihara H, Osada R, Kanamori M et al (2001) Minimum 10-year followup study of anterior lumbar interbody fusion for isthmic spondylolisthesis. J Spinal Disord 14:91–99CrossRefPubMedGoogle Scholar
  4. 4.
    Takahashi K, Kitahara H, Yamagata M et al (1990) Long-term results of anterior interbody fusion for treatment of degenerative spondylolisthesis. Spine 15:1211–1215CrossRefPubMedGoogle Scholar
  5. 5.
    Tiusanen H, Seitsalo S, Osterman K et al (1995) Retrograde ejaculation after anterior interbody lumbar fusion. Eur Spine J 4:339–342CrossRefPubMedGoogle Scholar
  6. 6.
    Okuda S, Miyauchi A, Oda T et al (2006) Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine 4:304–309CrossRefPubMedGoogle Scholar
  7. 7.
    Ozgur BM, Aryan HE, Pimenta L et al (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443CrossRefPubMedGoogle Scholar
  8. 8.
    Pimenta L (2001) Lateral endoscopic transpsoas retroperitoneal approach for lumbar spine surgery. VIII Brazilian Spine Society Meeting. Belo Horizonte, Minas Gerais, Brazil (abstract)Google Scholar
  9. 9.
    Bergey DL, Villavicencio AT, Goldstein T et al (2004) Endoscopic lateral transpsoas approach to the lumbar spine. Spine 29:1681–1688CrossRefPubMedGoogle Scholar
  10. 10.
    Cummock MD, Vanni S, Levi AD et al (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18CrossRefPubMedGoogle Scholar
  11. 11.
    Silvestre C, Mac-Thiong JM, Hilmi R et al (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6:89–97CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kanno K, Ohtori S, Orita S et al (2014) Miniopen oblique lateral L5–S1 interbody fusion: a report of 2 cases. Case Rep Orthop 2014:603531. doi: 10.1155/2014/603531 (Epub 2014 Oct 21) PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ohtori S, Orita S, Yamauchi K et al (2015) Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J 56:1051–1059CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ohtori S, Koshi T, Yamashita M et al (2011) Single-level instrumented posterolateral fusion versus non-instrumented anterior interbody fusion for lumbar spondylolisthesis: a prospective study with a 2-year follow-up. J Orthop Sci 16:352–358CrossRefPubMedGoogle Scholar
  15. 15.
    Youssef JA, McAfee PC, Patty CA et al (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine 35:S302–S311CrossRefPubMedGoogle Scholar
  16. 16.
    Marchi L, Abdala N, Oliveira L et al (2013) Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 19:110–118CrossRefPubMedGoogle Scholar
  17. 17.
    Schmid MR, Stucki G, Duewell S et al (1999) Changes in cross-sectional measurements of the spinal canal and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. Am J Roentgenol 172:1095–1102CrossRefGoogle Scholar
  18. 18.
    Oliveira L, Marchi L, Coutinho E et al (2010) A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine 35:S331–S337CrossRefPubMedGoogle Scholar
  19. 19.
    Marchi L, Abdala N, Oliveira L et al (2013) Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 19:110–118CrossRefPubMedGoogle Scholar
  20. 20.
    Elowitz EH, Yanni DS, Chwajol M et al (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg 54:201–206CrossRefPubMedGoogle Scholar
  21. 21.
    Davis TT, Bae HW, Mok JM et al (2011) Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4–L5 disc. J Bone Joint Surg Am 93:1482–1487CrossRefPubMedGoogle Scholar
  22. 22.
    Uribe JS, Arredondo N, Dakwar E et al (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 13:260–266CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jun Sato
    • 1
  • Seiji Ohtori
    • 1
  • Sumihisa Orita
    • 1
  • Kazuyo Yamauchi
    • 1
  • Yawara Eguchi
    • 1
  • Nobuyasu Ochiai
    • 1
  • Kazuki Kuniyoshi
    • 1
  • Yasuchika Aoki
    • 1
  • Junichi Nakamura
    • 1
  • Masayuki Miyagi
    • 1
  • Miyako Suzuki
    • 1
  • Gou Kubota
    • 1
  • Kazuhide Inage
    • 1
  • Takeshi Sainoh
    • 1
  • Kazuki Fujimoto
    • 1
  • Yasuhiro Shiga
    • 1
  • Koki Abe
    • 1
  • Hiroto Kanamoto
    • 1
  • Gen Inoue
    • 1
  • Kazuhisa Takahashi
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of MedicineChiba UniversityChibaJapan

Personalised recommendations