European Spine Journal

, Volume 26, Issue 3, pp 666–670 | Cite as

Range of motion after thoracolumbar corpectomy: evaluation of analogous constructs with a novel low-profile anterior dual-rod system and a traditional dual-rod system

  • Martin Gehrchen
  • Sajan K. Hegde
  • Mark Moldavsky
  • Suresh Chinthukunta
  • Manasa Gudipally
  • Brandon Bucklen
  • Kanaan Salloum
  • Saif Khalil
Original Article


Study design

An in vitro biomechanical study.


To compare the biomechanical stability of traditional and low-profile thorocolumbar anterior instrumentation after a corpectomy with cross-connectors.

Summary of background data

Dual-rod anterior thoracolumbar lateral plates (ATLP) have been used clinically to stabilize the thorocolumbar spine.


The stability of a low-profile dual-rod system (LP DRS) and a traditional dual-rod system (DRS) was compared using a calf spine model. Two groups of seven specimens were tested intact and then in the following order: (1) ATLP with two cross-connectors and spacer; (2) ATLP with one cross-connector and spacer; (3) ATLP with spacer. Data were normalized to intact (100 %) and statistical analysis was used to determine between-group significances.


Both constructs reduced motion compared to intact in flexion–extension and lateral bending. Axial rotation motion became unstable after the corpectomy and motion was greater than intact, even with two cross-connectors with both systems. Relative to their respective intact groups, LP DRS significantly reduced motion compared to analogous DRS in flexion–extension. The addition of cross-connectors reduced motion in all loading modes.


The LP DRS provides 7.5 mm of reduced height with similar biomechanical performance. The reduced height may be beneficiary by reduced irritation and impingement on adjacent structures.


Anterior lateral fixation Corpectomy Biomechanics Cross-connectors Low profile 



The authors acknowledge funding for this project paid for by Musculoskeletal Education and Research Center (MERC), A Division of Globus Medical Inc.

Conflict of interest

M.G. received Grants from Globus Medical Inc. and Medtronic Sofamor Danek, received payment for lectures from Globus Medical Inc., Medtronic Sofamor Danek, and K2M; S.H. is a consultant, receives grants/research support, and royalties, and is on the speaker’s bureau for Globus Medical Inc; M.M, S.C, M.G, B.B, K.S, and S.K are paid employees of Globus Medical Inc.


  1. 1.
    Xu JG, Zeng BF, Zhou W, Kong WQ, Fu YS, Zhao BZ, Zhang T, Lian XF (2011) Anterior Z-plate and titanic mesh fixation for acute burst thoracolumbar fracture. Spine (Phila Pa 1976) 36:E498–E504. doi: 10.1097/BRS.0b013e3181f5ddc7 CrossRefGoogle Scholar
  2. 2.
    McDonough PW, Davis R, Tribus C, Zdeblick TA (2004) The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. Spine (Phila Pa 1976) 29:1901–1908CrossRefGoogle Scholar
  3. 3.
    An HS, Lim TH, You JW, Hong JH, Eck J, McGrady L (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine (Phila Pa 1976) 20:1979–1983CrossRefGoogle Scholar
  4. 4.
    Zhang H, Johnston CE 2nd, Pierce WA, Ashman RB, Bronson DG, Haideri NF (2006) New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support. Spine (Phila Pa 1976) 31:E934–E940. doi: 10.1097/01.brs.0000247956.00599.a3 CrossRefGoogle Scholar
  5. 5.
    Bartanusz V, Muzumdar A, Hussain M, Moldavsky M, Bucklen B, Khalil S (2011) Spinal instrumentation after complete resection of the last lumbar vertebra: an in vitro biomechanical study after L5 spondylectomy. Spine (Phila Pa 1976) 36:1017–1021. doi: 10.1097/BRS.0b013e3181e92458 CrossRefGoogle Scholar
  6. 6.
    Gabriel JP, Muzumdar AM, Khalil S, Ingalhalikar A (2011) A novel crossed rod configuration incorporating translaminar screws for occipitocervical internal fixation: an in vitro biomechanical study. Spine J 11:30–35. doi: 10.1016/j.spinee.2010.09.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Moon SM, Ingalhalikar A, Highsmith JM, Vaccaro AR (2009) Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J 9:330–335. doi: 10.1016/j.spinee.2008.11.012 CrossRefPubMedGoogle Scholar
  8. 8.
    Bishop FS, Samuelson MM, Finn MA, Bachus KN, Brodke DS, Schmidt MH (2010) The biomechanical contribution of varying posterior constructs following anterior thoracolumbar corpectomy and reconstruction. J Neurosurg Spine 13:234–239. doi: 10.3171/2010.3.SPINE09267 CrossRefPubMedGoogle Scholar
  9. 9.
    Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chou D, Larios AE, Chamberlain RH, Fifield MS, Hartl R, Dickman CA, Sonntag VK, Crawford NR (2006) A biomechanical comparison of three anterior thoracolumbar implants after corpectomy: are two screws better than one? J Neurosurg Spine 4:213–218. doi: 10.3171/spi.2006.4.3.213 CrossRefPubMedGoogle Scholar
  11. 11.
    Brodke DS, Gollogly S, Bachus KN, Alexander Mohr R, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine (Phila Pa 1976) 28:1794–1801. doi: 10.1097/01.BRS.0000083201.55495.0E CrossRefGoogle Scholar
  12. 12.
    Sasso RC, Best NM, Reilly TM, McGuire RA Jr (2005) Anterior-only stabilization of three-column thoracolumbar injuries. J Spinal Disord Tech 18(Suppl):S7–S14CrossRefPubMedGoogle Scholar
  13. 13.
    Hitchon PW, Goel VK, Rogge TN, Torner JC, Dooris AP, Drake JS, Yang SJ, Totoribe K (2000) In vitro biomechanical analysis of three anterior thoracolumbar implants. J Neurosurg 93:252–258PubMedGoogle Scholar
  14. 14.
    Lowe T, O’Brien M, Smith D, Fitzgerald D, Vraney R, Eule J, Alongi P (2002) Central and juxta-endplate vertebral body screw placement: a biomechanical analysis in a human cadaveric model. Spine (Phila Pa 1976) 27:369–373CrossRefGoogle Scholar
  15. 15.
    Mahar AT, Brown DS, Oka RS, Newton PO (2006) Biomechanics of cantilever “plow” during anterior thoracic scoliosis correction. Spine J 6:572–576. doi: 10.1016/j.spinee.2006.02.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Sha M, Ding ZQ, Ting HS, Kang LQ, Zhai WL, Liu H (2013) Biomechanical study comparing a new combined rod-plate system with conventional dual-rod and plate systems. Orthopedics 36:e235–e240. doi: 10.3928/01477447-20130122-28 CrossRefPubMedGoogle Scholar
  17. 17.
    Faro FD, White KK, Ahn JS, Oka RS, Mahar AT, Bawa M, Farnsworth CL, Garfin SR, Newton PO (2003) Biomechanical analysis of anterior instrumentation for lumbar corpectomy. Spine (Phila Pa 1976) 28:E468–E471. doi: 10.1097/01.BRS.0000096666.64634.79 CrossRefGoogle Scholar
  18. 18.
    Farley FA, Smith EA (1999) Torsional stiffness of a single-rod construct using three instrumentation systems for thoracic scoliosis. J Spinal Disord 12:430–435CrossRefPubMedGoogle Scholar
  19. 19.
    Wattenbarger JM, Herring JA, Bronson D, Ashman RB (2001) Mechanical testing of a single rod versus a double rod in a long-segment animal model. J Spinal Disord 14:232–236CrossRefPubMedGoogle Scholar
  20. 20.
    Wilke HJ, Krischak S, Claes L (1996) Biomechanical comparison of calf and human spines. J Orthop Res 14:500–503. doi: 10.1002/jor.1100140321 CrossRefPubMedGoogle Scholar
  21. 21.
    Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 26:E557–E561CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Gehrchen
    • 1
  • Sajan K. Hegde
    • 2
  • Mark Moldavsky
    • 3
  • Suresh Chinthukunta
    • 3
  • Manasa Gudipally
    • 3
  • Brandon Bucklen
    • 3
  • Kanaan Salloum
    • 3
  • Saif Khalil
    • 3
  1. 1.Spine Unit, Department of Orthopaedic SurgeryRigshospitalet, National University Hospital of CopenhagenCopenhagenDenmark
  2. 2.Apollo HospitalChennaiIndia
  3. 3.Musculoskeletal Education and Research Center (MERC), A Division of Globus Medical Inc.AudubonUSA

Personalised recommendations