Skip to main content

Advertisement

Log in

Age-related cutoffs for cervical movement behaviour to distinguish chronic idiopathic neck pain patients from unimpaired subjects

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The present study aims to develop age-dependent cutoff values in a quasi-experimental, cross-sectional diagnostic test study.

Methods

One hundred and twenty (120) asymptomatic subjects (n = 100, 36♀, 18 75 years, for normative values; n = 20, 23–75 years, 15♀, for selectivity analyses) and 20 patients suffering from idiopathic neck pain (selectivity analyses, 22–71 years, 15♀) were included. Subjects performed five repetitive maximal cervical flexion/extension movements in an upright sitting position. Cervical kinematic characteristics (maximal range of motion (ROM), coefficient of variation (CV) and mean conjunct movements in rotation and flexion (CM)) were calculated from raw 3D ultrasonic data. Regression analyses were conducted to reveal associations between kinematic characteristics and age and gender and thus to determine normative values for healthy subjects.

Results

Age explains 53 % of the variance in ROM (decrease 10.2° per decade), 13 % in CV (increase 0.003 per decade) and 9 % in CM (increase 0.57° per decade). Receivers operating characteristic (ROC) analyses were conducted for differences between individual values of the kinematic characteristics and normative values to optimise cutoff values for distinguishing patients from unimpaired subjects (20 patients and 20 healthy). Cutoff values distinguished asymptomatic subjects’ and chronic nonspecific neck patient’s movement characteristics with sufficient quality (sensitivity 70–80 %, specificity 65–70 %).

Conclusions

By including such classifications, the present findings expand actual research stating an age-related decrease in kinematic behaviour only using categorising span widths across decades. Future study is warranted to reveal our results’ potential applicability for intervention onset decision making for idiopathic neck pain patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guzman J, Hurwitz EL, Carroll LJ, Haldeman S, Côté P, Carragee EJ, Peloso PM, van der Velde G, Holm LW, Hogg-Johnson S, Nordin M, Cassidy JD (2008) A New Conceptual Model of Neck Pain. Spine 33(Neck Pain Suppl):S14

    Article  PubMed  Google Scholar 

  2. Smedmark V, Wallin M, Arvidsson I (2000) Inter-examiner reliability in assessing passive intervertebral motion of the cervical spine. Man Ther 5(2):97–101

    Article  CAS  PubMed  Google Scholar 

  3. Gross AR, Aker PD, Quartly C (1996) Manual therapy in the treatment of neck pain. Rheum Dis Clin North Am (Rheumatic diseases clinics of North America) 22(3):579–598

    Article  CAS  Google Scholar 

  4. Johnson MJ, Lucas GL (1997) Value of cervical spine radiographs as a screening tool. Clin Orthop Relat Res 340:102–108

    Article  PubMed  Google Scholar 

  5. Vogt L, Segieth C, Banzer W, Himmelreich H (2007) Movement behaviour in patients with chronic neck pain. Physiother Res Int 12(4):206–212

    Article  PubMed  Google Scholar 

  6. Guo L, Lee S, Lin C, Yang C, Hou Y, Wu W, Lin H (2012) Three-dimensional characteristics of neck movements in subjects with mechanical neck disorder. J Back Musculoskelet Rehabil 25(1):47–53

    PubMed  Google Scholar 

  7. Johnston V, Jull G, Souvlis T, Jimmieson NL (2008) Neck movement and muscle activity characteristics in female office workers with neck pain. Spine 33(5):555–563

    Article  CAS  PubMed  Google Scholar 

  8. Lee H, Nicholson LL, Adams RD (2005) Neck muscle endurance, self-report, and range of motion data from subjects with treated and untreated neck pain. J Manipulative Physiol Ther 28(1):25–32

    Article  PubMed  Google Scholar 

  9. Rodriquez AA, Burns SP (2008) Assessment of chronic neck pain and a brief trial of cervical strengthening. Am J Phys Med Rehabil 87(11):903–909

    Article  PubMed  Google Scholar 

  10. Strimpakos N (2011) The assessment of the cervical spine. Part 1: range of motion and proprioception. J Bodyw Mov Ther 15(1):114–124

    Article  PubMed  Google Scholar 

  11. Woodhouse A, Vasseljen O (2008) Altered motor control patterns in whiplash and chronic neck pain. BMC Musculoskelet Disord 9(1):90

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M (2008) Sensorimotor disturbances in chronic neck pain–range of motion, peak velocity, smoothness of movement, and repositioning acuity. Man Ther 13(2):122–131

    Article  PubMed  Google Scholar 

  13. Castro WH, Sautmann A, Schilgen M, Sautmann M (2000) Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex. An experimental examination. Spine 25(4):443–449

    Article  CAS  PubMed  Google Scholar 

  14. Chen J, Solinger AB, Poncet JF, Lantz CA (1999) Meta-analysis of normative cervical motion. Spine 24(15):1571–1578

    Article  CAS  PubMed  Google Scholar 

  15. Trott PH, Pearcy MJ, Ruston SA, Fulton I, Brien C (1996) Three-dimensional analysis of active cervical motion: the effect of age and gender. Clin Biomech 11(4):201–206

    Article  Google Scholar 

  16. Uthaikhup S, Jull G (2009) Performance in the cranio-cervical flexion test is altered in elderly subjects. Man Ther 14(5):475–479

    Article  PubMed  Google Scholar 

  17. Ordway NR, Seymour R, Donelson RG, Hojnowski L, Lee E, Edwards WT (1997) Cervical sagittal range-of-motion analysis using three methods. Cervical range-of-motion device, 3 space, and radiography. Spine 22(5):501–508

    Article  CAS  PubMed  Google Scholar 

  18. Cagnie B, Cools A, DelooseE V, Cambier D, Danneels L (2007) Reliability and normative database of the zebris cervical range-of-motion system in healthy controls with preliminary validation in a group of patients with neck pain. J Manipulative Physiol Ther 30(6):450–455

    Article  PubMed  Google Scholar 

  19. Kuhlman KA (1993) Cervical range of motion in the elderly. Arch Phys Med Rehabil 74(10):1071–1079

    Article  CAS  PubMed  Google Scholar 

  20. Walmsley RP, Kimber P, Culham E (1996) The effect of initial head position on active cervical axial rotation range of motion in two age populations. Spine 21(21):2435–2442

    Article  CAS  PubMed  Google Scholar 

  21. Yukawa Y, Kato F, Suda K, Yamagata M, Ueta T (2012) Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: radiographic data from over 1,200 asymptomatic subjects. Eur Spine J 21(8):1492–1498

    Article  PubMed Central  PubMed  Google Scholar 

  22. Whiting PF (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529

    Article  PubMed  Google Scholar 

  23. Whiting PF, Weswood ME, Rutjes AWS, Reitsma JB, Bossuyt PNM, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    Article  PubMed Central  PubMed  Google Scholar 

  24. Himmelreich H, Stefanicki E, Banzer W (1998) Die Ultraschallgesteuerte Anthropometrie (UGA)–Zur Entwicklung eines neuen Verfahrens in der Asymmetriediagnostik (Ultrasound-controlled anthropometry–on the development of a new method in asymmetry diagnosis). Sportverletz Sportschaden 12(2):60–65

    Article  CAS  PubMed  Google Scholar 

  25. Dvir Z, Prushansky T (2000) Reproducibility and instrument validity of a new ultrasonography-based system for measuring cervical spine kinematics. Clin Biomech 15(9):658–664

    Article  CAS  Google Scholar 

  26. Vogt L, Portscher M, Brettmann K, Pfeifer K, Banzer W (2003) Cross-validation of marker configurations to measure pelvic kinematics in gait. Gait Posture 18(3):178–184

    Article  PubMed  Google Scholar 

  27. Wheeler AH, Goolkasian P, Baird AC, Darden BV (1999) Development of the neck pain and disability scale. Item analysis, face, and criterion-related validity. Spine 24(13):1290–1294

    Article  CAS  PubMed  Google Scholar 

  28. Goolkasian P, Wheeler AH, Gretz SS (2002) The neck pain and disability scale: test-retest reliability and construct validity. Clin J Pain 18(4):245–250

    Article  PubMed  Google Scholar 

  29. Blozik E, Himmel W, Kochen MM, Herrmann-Lingen C, Scherer M (2011) Sensitivity to change of the neck pain and disability scale. Eur Spine J 20(6):882–889

    Article  PubMed Central  PubMed  Google Scholar 

  30. Chan Ci En M, Clair DA, Edmondston SJ (2009) Validity of the neck disability index and Neck Pain And Disability Scale for measuring disability associated with chronic, non-traumatic neck pain. Man Ther 14(4):433–438

    Article  Google Scholar 

  31. Scherer M, Blozik E, Himmel W, Laptinskaya D, Kochen MM, Herrmann-Lingen C (2008) Psychometric properties of a German version of the neck pain and disability scale. Eur Spine J 17(7):922–929

    Article  PubMed Central  PubMed  Google Scholar 

  32. Muche R (2008) Validierung von Regressionsmodellen: notwendigkeit und Beschreibung der wichtigsten Methoden. Rehabilitation 47(04):243–250

    Article  CAS  PubMed  Google Scholar 

  33. Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253(5018):390–395

    Article  CAS  PubMed  Google Scholar 

  34. Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54(8):774–781

    Article  CAS  PubMed  Google Scholar 

  35. Altman DG, Bland JM (1994) Diagnostic tests 3: receiver operating characteristic plots. BMJ 309(6948):188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lind B, Sihlbom H, Nordwall A, Malchau H (1989) Normal range of motion of the cervical spine. Arch Phys Med Rehabil 70(9):692–695

    CAS  PubMed  Google Scholar 

  37. O’Driscoll SL, Tomenson J (1982) The cervical spine. Clin Rheum Dis 8(3):617–630

    PubMed  Google Scholar 

  38. Sforza C, Grassi G, Fragnito N, Turci M, Ferrario VF (2002) Three-dimensional analysis of active head and cervical spine range of motion: effect of age in healthy male subjects. Clin Biomech 17(8):611–614

    Article  Google Scholar 

  39. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20(11):1307–1314

    CAS  PubMed  Google Scholar 

  40. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16

    PubMed  Google Scholar 

  41. Vandervoort AA (2002) Aging of the human neuromuscular system. Muscle Nerve 25(1):17–25

    Article  CAS  PubMed  Google Scholar 

  42. Tracy BL, Maluf KS, Stephenson JL, Hunter SK, Enoka RM (2005) Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults. Muscle Nerve 32(4):533–540

    Article  PubMed  Google Scholar 

  43. Boyd-Clark LC, Briggs CA, Galea MP (2002) Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine 27(7):694–701

    Article  CAS  PubMed  Google Scholar 

  44. Wolfenberger VA, Bui Q, Batenchuk GB (2002) A comparison of methods of evaluating cervical range of motion. J Manipulative Physiol Ther 25(3):154–160

    Article  PubMed  Google Scholar 

  45. Schweigart G, Chien R, Mergner T (2002) Neck proprioception compensates for age-related deterioration of vestibular self-motion perception. Exp Brain Res 147(1):89–97

    Article  PubMed  Google Scholar 

  46. Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK (2001) Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res 19(5):977–984

    Article  CAS  PubMed  Google Scholar 

  47. Wishart LR, Lee TD (1997) Effects of aging and reduced relative frequency of knowledge of results on learning a motor skill. Percept Mot Skills 84(3 Pt 1):1107–1122

    Article  CAS  PubMed  Google Scholar 

  48. Labyt E, Szurhaj W, Bourriez J, Cassim F, Defebvre L, Destée A, Derambure P (2004) Influence of aging on cortical activity associated with a visuo-motor task. Neurobiol Aging 25(6):817–827

    Article  CAS  PubMed  Google Scholar 

  49. Seidler RD (2007) Aging affects motor learning but not savings at transfer of learning. Learn Mem 14(1–2):17–21

    Article  PubMed  Google Scholar 

  50. Smith CD, Umberger GH, Manning EL, Slevin JT, Wekstein DR, Schmitt FA, Markesbery WR, Zhang Z, Gerhardt GA, Kryscio RJ, Gash DM (1999) Critical decline in fine motor hand movements in human aging. Neurology 53(7):1458–1461

    Article  CAS  PubMed  Google Scholar 

  51. Weinberg RS, Hunt VV (1976) The interrelationships between anxiety, motor performance and electromyography. J Mot Behav 8(3):219–224

    Article  CAS  PubMed  Google Scholar 

  52. Waersted M, Bjørklund RA, Westgaard RH (1994) The effect of motivation on shoulder-muscle tension in attention-demanding tasks. Ergonomics 37(2):363–376

    Article  CAS  PubMed  Google Scholar 

  53. Jorritsma W, Dijkstra PU, Vries GE, Geertzen JHB, Reneman MF (2012) Detecting relevant changes and responsiveness of Neck Pain And Disability Scale and neck disability index. Eur Spine J 21(12):2550–2557

    Article  PubMed Central  PubMed  Google Scholar 

  54. Falla D, O’Leary S, Farina D, Jull G (2011) Association between intensity of pain and impairment in onset and activation of the deep cervical flexors in patients with persistent neck pain. Clin J Pain 27(4):309–314

    Article  PubMed  Google Scholar 

  55. Falla D, O’Leary S, Farina D, Jull G (2011) The change in deep cervical flexor activity after training is associated with the degree of pain reduction in patients with chronic neck pain. Clin J Pain 28(7):628–634

    Article  Google Scholar 

  56. Rezasoltani A, Ahmadipoor A, Khademi-Kalantari K, Javanshir K (2012) The sign of unilateral neck semispinalis capitis muscle atrophy in patients with chronic non-specific neck pain. J Back Musculoskelet Rehabil 25(1):67–72

    PubMed  Google Scholar 

  57. Javanshir K, Ortega-Santiago R, Mohseni-Bandpei MA, Miangolarra-Page JC, Fernández-de-las-Peñas C (2010) Exploration of somatosensory impairments in subjects with mechanical idiopathic neck pain: a preliminary study. J Manipulative Physiol Ther 33(7):493–499

    Article  PubMed  Google Scholar 

  58. Eltayeb S, Staal JB, Hassan A, de Bie RA (2009) Work related risk factors for neck, shoulder and arms complaints: a cohort study among Dutch computer office workers. J Occup Rehabil 19(4):315–322

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kato S, Takeshita K, Matsudaira K, Tonosu J, Hara N, Chikuda H (2012) Normative score and cut-off value of the neck disability index. J Orthop Sci 17(6):687–693

    Article  PubMed  Google Scholar 

  60. Röijezon U, Djupsjöbacka M, Björklund M, Häger-Ross C, Grip H, Liebermann DG (2010) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord 11:222

    Article  PubMed Central  PubMed  Google Scholar 

  61. Lee H, Wang J, Yao G, Wang S (2008) Association between cervicocephalic kinesthetic sensibility and frequency of subclinical neck pain. Man Ther 13(5):419–425

    Article  PubMed  Google Scholar 

  62. Tsang SM, Szeto GP, Lee RY (2013) Normal kinematics of the neck: the interplay between the cervical and thoracic spines. Man Ther 18(5):431–437

    Article  PubMed  Google Scholar 

  63. Carroll LJ, Hogg-Johnson S, Velde G, Haldeman S, Holm LW, Carragee EJ, Hurwitz EL, Côté P, Nordin M, Peloso PM, Guzman J, Cassidy JD (2008) Course and prognostic factors for neck pain in the general population. Eur Spine J 17(S1):75–82

    Article  PubMed Central  Google Scholar 

  64. Kay TM, Gross A, Goldsmith CH, Rutherford S, Voth S, Hoving JL, Brønfort G, Santaguida PL (2012) Exercises for mechanical neck disorders. Cochrane Database Syst Rev 8:CD004250

    PubMed  Google Scholar 

  65. Gross A, Miller J, D’Sylva J, Burnie SJ, Goldsmith CH, Graham N, Haines T, Brønfort G, Hoving JL (2010) Manipulation or mobilisation for neck pain: a Cochrane Review. Man Ther 15(4):315–333

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was initiated and funded by the German Federal Institute of Sport Science and realised within MiSpEx—the National Research Network for Medicine in Spine Exercise.

Conflict of interest

The authors declare that they have no conflict of interest. No financial and personal relationships with other people or organisations have inappropriately influenced our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Niederer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niederer, D., Vogt, L., Wilke, J. et al. Age-related cutoffs for cervical movement behaviour to distinguish chronic idiopathic neck pain patients from unimpaired subjects. Eur Spine J 24, 493–502 (2015). https://doi.org/10.1007/s00586-014-3715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3715-y

Keywords

Navigation