Skip to main content
Log in

In vivo compatibility of Dynesys® spinal implants: a case series of five retrieved periprosthetic tissue samples and corresponding implants

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To determine whether particulate debris is present in periprosthetic tissue from revised Dynesys® devices, and if present, elicits a biological tissue reaction.

Methods

Five Dynesys® dynamic stabilization systems consisting of pedicle screws (Ti alloy), polycarbonate-urethane (PCU) spacers and a polyethylene-terephthalate (PET) cord were explanted for pain and screw loosening after a mean of 2.86 years (1.9–5.3 years). Optical microscopy and scanning electron microscopy were used to evaluate wear, deformation and surface damage, and attenuated total reflectance Fourier transform infrared spectroscopy to assess surface chemical composition of the spacers. Periprosthetic tissue morphology and wear debris were determined using light microscopy, and PCU and PET wear debris by polarized light microscopy.

Results

All implants had surface damage on the PCU spacers consistent with scratches and plastic deformation; 3 of 5 exhibited abrasive wear zones. In addition to fraying of the outer fibers of the PET cords in five implants, one case also evidenced cord fracture. The pedicle screws were unremarkable. Patient periprosthetic tissues around the three implants with visible PCU damage contained wear debris and a corresponding macrophage infiltration. For the patient revised for cord fracture, the tissues also contained large wear particles (>10 μm) and giant cells. Tissues from the other two patients showed comparable morphologies consisting of dense fibrous tissue with no inflammation or wear debris.

Conclusions

This is the first study to evaluate wear accumulation and local tissue responses for explanted Dynesys® devices. Polymer wear debris and an associated foreign-body macrophage response were observed in three of five cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu S-W, Yang S-C, Ma C-H, Wu C-H, Yen C-Y, Tu Y-K (2012) Comparison of Dynesys posterior stabilization and posterior lumbar interbody fusion for spinal stenosis L4L5. Acta Orthop Belg 78:230–239

    PubMed  Google Scholar 

  2. Di Silvestre M, Lolli F, Bakaloudis G, Parisini P (2010) Dynamic stabilization for degenerative lumbar scoliosis in elderly patients. Spine (Phila Pa 1976) 35:227–234. doi:10.1097/BRS.0b013e3181bd3be6

    Article  Google Scholar 

  3. Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976) 31:442–449. doi:10.1097/01.brs.0000200092.49001.6e

    Article  Google Scholar 

  4. Schwarzenbach O, Rohrbach N, Berlemann U (2010) Segment-by-segment stabilization for degenerative disc disease: a hybrid technique. Eur Spine J 19:1010–1020. doi:10.1007/s00586-010-1282-4

    Article  PubMed Central  PubMed  Google Scholar 

  5. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed Central  PubMed  Google Scholar 

  6. Klockner C (2010) Long-term results of the Dynesys implant. Orthopade 39:559–564. doi:10.1007/s00132-009-1585-5

    Article  CAS  PubMed  Google Scholar 

  7. Schaeren S, Broger I, Jeanneret B (2008) Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine 33:E636–E642. doi:10.1097/BRS.0b013e31817d2435

    Article  PubMed  Google Scholar 

  8. Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331

    Article  PubMed  Google Scholar 

  9. Wurgler-Hauri CC, Kalbarczyk A, Wiesli M, Landolt H, Fandino J (2008) Dynamic neutralization of the lumbar spine after microsurgical decompression in acquired lumbar spinal stenosis and segmental instability. Spine (Phila Pa 1976) 33:E66–E72. doi:10.1097/BRS.0b013e31816245c0

    Article  Google Scholar 

  10. Kim CH, Chung CK, Jahng TA (2011) Comparisons of outcomes after single or multilevel dynamic stabilization: effects on adjacent segment. J Spinal Disord Tech 24:60–67. doi:10.1097/BSD.0b013e3181d4eb44

    Article  PubMed  Google Scholar 

  11. Bothmann M, Kast E, Boldt GJ, Oberle J (2008) Dynesys fixation for lumbar spine degeneration. Neurosurg Rev 31:189–196

    Article  PubMed  Google Scholar 

  12. Kocak T, Cakir B, Reichel H, Mattes T (2010) Screw loosening after posterior dynamic stabilization–review of the literature. Acta Chir Orthop Traumatol Cech 77:134–139

    CAS  PubMed  Google Scholar 

  13. Lutz JA, Otten P, Maestretti G (2012) Late infections after dynamic stabilization of the lumbar spine with Dynesys. Eur Spine J 21:2573–2579. doi:10.1007/s00586-012-2366-0

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ko C-C, Tsai H-W, Huang W-C, Wu J-C, Chen Y-C, Shih Y-H, Chen H-C, Wu C-L, Cheng H (2010) Screw loosening in the Dynesys stabilization system: radiographic evidence and effect on outcomes. Neurosurg 28:E10. doi:10.3171/2010.3.FOCUS1052

    Google Scholar 

  15. Schilling C, Kruger S, Grupp TM, Duda GN, Blomer W, Rohlmann A (2011) The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J 20:297–307. doi:10.1007/s00586-010-1620-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gedet P, Haschtmann D, Thistlethwaite PA, Ferguson SJ (2009) Comparative biomechanical investigation of a modular dynamic lumbar stabilization system and the Dynesys system. Eur Spine J 18:1504–1511. doi:10.1007/s00586-009-1077-7

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    Article  CAS  PubMed  Google Scholar 

  18. Kurtz SM, MacDonald D, Ianuzzi A, van Ooij A, Isaza J, Ross ER, Regan J (2009) The natural history of polyethylene oxidation in total disc replacement. Spine (Phila Pa 1976) 34:2369–2377. doi:10.1097/BRS.0b013e3181b20230

    Article  Google Scholar 

  19. Ianuzzi A, Kurtz SM, Kane W, Shah P, Siskey R, van Ooij A, Bindal R, Ross R, Lanman T, Buttner-Janz K, Isaza J (2010) In vivo deformation, surface damage, and biostability of retrieved Dynesys systems. Spine 35:E1310–E1316. doi:10.1097/BRS.0b013e3181d6f84f

    Article  PubMed  Google Scholar 

  20. Shen M, Zhang K, Koettig P, Welch WC, Dawson JM (2011) In vivo biostability of polymeric spine implants: retrieval analyses from a United States investigational device exemption study. Eur Spine J 20:1837–1849. doi:10.1007/s00586-011-1812-8

    Article  PubMed Central  PubMed  Google Scholar 

  21. Christenson EM, Anderson JM, Hiltner A (2004) Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. J Biomed Mater Res A 70:245–255. doi:10.1002/jbm.a.30067

    Article  PubMed  Google Scholar 

  22. Grammatopoulos G, Pandit H, Kamali A, Maggiani F, Glyn-Jones S, Gill HS, Murray DW, Athanasou N (2013) The correlation of wear with histological features after failed hip resurfacing arthroplasty. J Bone Joint Surg Am 95:e81. doi:10.2106/JBJS.L.00775

    Article  PubMed  Google Scholar 

  23. Veruva SY, Lanman TH, Isaza JE, Macdonald DW, Kurtz SM, Steinbeck MJ (2014) UHMWPE wear debris and tissue reactions are reduced for contemporary designs of lumbar total disc replacements. Clin Orthop Relat Res (in press)

  24. Baxter RM, Ianuzzi A, Freeman TA, Kurtz SM, Steinbeck MJ (2010) Distinct immunohistomorphologic changes in periprosthetic hip tissues from historical and highly crosslinked UHMWPE implant retrievals. J Biomed Mater Res A 95:68–78. doi:10.1002/jbm.a.32813

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cipriani E, Bracco P, Kurtz SM, Costa L, Zanetti M (2013) In-vivo degradation of poly(carbonate-urethane) based spine implants. Polym Degrad Stab 98:1225–1235. doi:10.1016/j.polymdegradstab.2013.03.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fisher J, Bell J, Barbour PS, Tipper JL, Matthews JB, Besong AA, Stone MH, Ingham E (2001) A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Inst Mech Eng H 215:127–132

    Article  CAS  PubMed  Google Scholar 

  27. Vanden Bossche L, Vanderstraeten G (2005) Heterotopic ossification: a review. J Rehabil Med 37:129–136. doi:10.1080/16501970510027628

    Article  PubMed  Google Scholar 

  28. McAfee PC, Cunningham BW, Devine J, Williams E, Yu-Yahiro J (2003) Classification of heterotopic ossification (HO) in artificial disk replacement. J Spinal Disord Tech 16:384–389

    Article  PubMed  Google Scholar 

  29. Guyer RD, McAfee PC, Banco RJ, Bitan FD, Cappuccino A, Geisler FH, Hochschuler SH, Holt RT, Jenis LG, Majd ME, Regan JJ, Tromanhauser SG, Wong DC, Blumenthal SL (2009) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386. doi:10.1016/j.spinee.2008.08.007

    Article  PubMed  Google Scholar 

  30. Ingham E, Fisher J (2000) Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng H 214:21–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eual A. Phillips for his help in performing the image analyses for this paper.

IRB approval

Yes.

Conflict of interest

This study was supported by a grant from the NIAMS (NIH R01 AR56264). One of the authors (SMK) is an employee and shareholder of Exponent, Inc, and institutional support for SMK is received as a Principal Investigator from Smith & Nephew; Stryker Orthopaedics; Zimmer Inc; Biomet; DePuy Synthes; Medtronic; Invibio; Stelkast; Formae; Kyocera Medical; Wright Medical Technology; CeramTec; DJO; Celanese; Aesculap; SpinalMotion, Inc; and Active Implants outside of the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Steinbeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neukamp, M., Roeder, C., Veruva, S.Y. et al. In vivo compatibility of Dynesys® spinal implants: a case series of five retrieved periprosthetic tissue samples and corresponding implants. Eur Spine J 24, 1074–1084 (2015). https://doi.org/10.1007/s00586-014-3705-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3705-0

Keywords

Navigation