Skip to main content

Advertisement

Log in

Sagittal deformities of the spine: factors influencing the outcomes and complications

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Degenerative changes have the potential to greatly disrupt the normal curvature of the spine, leading to sagittal malalignment. This phenomenon is often treated with operative modalities, such as osteotomies, though even with surgery, only one-third of patients may reach neutral alignment. Improvement in surgical outcomes may be achieved through better understanding of radiographic spino-pelvic parameters and their association with deformity. Methodical surgical planning, including selection of levels of instrumentation and site of the osteotomy, is crucial in determining the optimal plan for a patient’s specific pathology and may minimize risk of developing postoperative proximal junctional kyphosis/failure. While sagittal alignment is essential in operative strategy, the coronal plane should not be overlooked, as it may affect the osteotomy technique. The concepts of sagittal balance and alignment are further complicated in patients with neuromuscular diseases such as Parkinson’s disease, and appreciation of the interplay between anatomic and postural deformities is necessary to properly treat these patients. Finally, given the importance of sagittal alignment and the role of osteotomies in treatment for deformity, the need for future research becomes apparent. Novel intraoperative measurement techniques and three-dimensional analysis of the spine may allow for vastly improved operative correction. Furthermore, awareness of the relationship between alignment and balance, the soft tissue envelope, and compensatory mechanisms will provide a more comprehensive conception of the nature of spinal deformity and the modalities with which it is treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim YB, Kim YJ, Ahn Y-J et al (2014) A comparative analysis of sagittal spinopelvic alignment between young and old men without localized disc degeneration. Eur Spine J 23:1400–1406. doi:10.1007/s00586-014-3236-8

    Article  PubMed  Google Scholar 

  2. Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(Suppl 5):626–633. doi:10.1007/s00586-011-1930-3

    Article  PubMed Central  PubMed  Google Scholar 

  3. Obeid I, Hauger O, Aunoble S et al (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J 20(Suppl 5):681–685. doi:10.1007/s00586-011-1936-x

    Article  PubMed Central  PubMed  Google Scholar 

  4. Schwab F, Patel A, Ungar B et al (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35:2224–2231. doi:10.1097/BRS.0b013e3181ee6bd4

    Article  PubMed  Google Scholar 

  5. Schwab F, Lafage V, Farcy J-P et al (2007) Surgical rates and operative outcome analysis in thoracolumbar and lumbar major adult scoliosis: application of the new adult deformity classification. Spine 32:2723–2730. doi:10.1097/BRS.0b013e31815a58f2

    Article  PubMed  Google Scholar 

  6. Youssef JA, Orndorff DO, Patty CA et al (2013) Current status of adult spinal deformity. Global Spine J 3:51–62. doi:10.1055/s-0032-1326950

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Liu S, Schwab F, Smith JS et al (2014) Likelihood of reaching minimal clinically important difference in adult spinal deformity: a comparison of operative and nonoperative treatment. Ochsner J 14:67–77

    PubMed Central  PubMed  Google Scholar 

  8. Wang MY, Mummaneni PV, Fu K-MG et al (2014) Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus 36:E12. doi:10.3171/2014.3.FOCUS1423

    Article  PubMed  Google Scholar 

  9. Bridwell KH, Glassman S, Horton W et al (2009) Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine 34:2171–2178. doi:10.1097/BRS.0b013e3181a8fdc8

    Article  PubMed  Google Scholar 

  10. Smith JS, Shaffrey CI, Berven S et al (2009) Improvement of back pain with operative and nonoperative treatment in adults with scoliosis. Neurosurgery 65:86–93. doi:10.1227/01.NEU.0000347005.35282.6C (discussion 93–94)

    Article  PubMed  Google Scholar 

  11. Schwab FJ, Hawkinson N, Lafage V et al (2012) Risk factors for major peri-operative complications in adult spinal deformity surgery: a multi-center review of 953 consecutive patients. Eur Spine J 21:2603–2610. doi:10.1007/s00586-012-2370-4

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bianco K, Norton R, Schwab F et al (2014) Complications and intercenter variability of three-column osteotomies for spinal deformity surgery: a retrospective review of 423 patients. Neurosurg Focus 36:E18. doi:10.3171/2014.2.FOCUS1422

    Article  PubMed  Google Scholar 

  13. Pichelmann MA, Lenke LG, Bridwell KH et al (2010) Revision rates following primary adult spinal deformity surgery: six hundred forty-three consecutive patients followed-up to twenty-two years postoperative. Spine 35:219–226. doi:10.1097/BRS.0b013e3181c91180

    Article  PubMed  Google Scholar 

  14. Maier SP, Lafage V, Smith JS et al (2013) Revision surgery after three-column osteotomy (3CO) in 335 adult spinal deformity (ASD) patients: intercenter variability and risk factors. Spine J 13:S9–S10. doi:10.1016/j.spinee.2013.07.052

    Article  Google Scholar 

  15. Saban KL, Penckofer SM (2007) Patient expectations of quality of life following lumbar spinal surgery. J Neurosci Nurs 39:180–189

    Article  PubMed  Google Scholar 

  16. Saban KL, Penckofer SM (2007) Patient expectations of quality of life following lumbar spinal surgery. J Neurosci Nurs 39:180–189

    Article  PubMed  Google Scholar 

  17. Blondel B, Schwab F, Bess S et al (2013) Posterior global malalignment after osteotomy for sagittal plane deformity: it happens and here is why. Spine 38:E394–E401. doi:10.1097/BRS.0b013e3182872415

    Article  PubMed  Google Scholar 

  18. Maier S, Smith JS, Schwab F et al (2014) Revision surgery after three-column osteotomy in 335 adult spinal deformity patients: inter-center variability and risk factors. Spine 39:881–885. doi:10.1097/BRS.0000000000000304

    Article  Google Scholar 

  19. Moal B, Lafage VC, Maier SP et al (2014) Discrepancies in preoperative planning and operative execution in the correction of sagittal spinal deformities. North American Spine Society 29th Annual Meeting (San Francisco). Podium Presentation

  20. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein S (ed) The pediatric spine: principles and practices. Raven Press, New York, pp 479–496

    Google Scholar 

  21. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34:E599–E606. doi:10.1097/BRS.0b013e3181aad219

    Article  PubMed  Google Scholar 

  23. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi:10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  24. Berjano P, Langella F, Ismael M-F et al (2014) Successful correction of sagittal imbalance can be calculated on the basis of pelvic incidence and age. Eur Spine J 23(Suppl 6):587–596. doi:10.1007/s00586-014-3556-8

    Article  PubMed  Google Scholar 

  25. Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine 38:E803–E812. doi:10.1097/BRS.0b013e318292b7b9

    Article  PubMed  Google Scholar 

  26. Schwab F, Ungar B, Blondel B et al (2012) Scoliosis research society-Schwab adult spinal deformity classification: a validation study. Spine 37:1077–1082. doi:10.1097/BRS.0b013e31823e15e2

    Article  PubMed  Google Scholar 

  27. Schwab FJ, Diebo BG, Smith JS et al (2014) Fine-tuned surgical planning in adult spinal deformity: determining the lumbar lordosis necessary by accounting for both thoracic kyphosis and pelvic incidence. North American Spine Society 29th Annual Meeting (San Francisco). Podium Presentation. In: The 21st International meeting on advanced spine techniques (IMAST), Valencia, Spain. Two-Minute Podium Presentation

  28. Been E, Barash A, Marom A, Kramer Pa (2010) Vertebral bodies or discs: which contributes more to human-like lumbar lordosis? Clin Orthop Relat Res 468:1822–1829. doi:10.1007/s11999-009-1153-7

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schultz A, Andersson G, Ortengren R et al (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am 64:713–720

    CAS  PubMed  Google Scholar 

  30. Bergin PF, O’Brien JR, Matteini LE et al (2010) The use of spinal osteotomy in the treatment of spinal deformity. Orthopedics 33:586–594. doi:10.3928/01477447-20100625-22

    Article  PubMed  Google Scholar 

  31. Ondra SL, Marzouk S, Koski T et al (2006) Mathematical calculation of pedicle subtraction osteotomy size to allow precision correction of fixed sagittal deformity. Spine 31:E973–E979. doi:10.1097/01.brs.0000247950.02886.e5

    Article  PubMed  Google Scholar 

  32. Smith JS, Klineberg E, Schwab F et al (2013) Change in classification grade by the SRS-Schwab adult spinal deformity classification predicts impact on health-related quality of life measures: prospective analysis of operative and non-operative treatment. Spine 38:1663–1671. doi:10.1097/BRS.0b013e31829ec563

    Article  PubMed  Google Scholar 

  33. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi:10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  34. Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11:80–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi:10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  36. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353

    Article  PubMed  Google Scholar 

  37. Margulies JY, Floman Y, Robin GC et al (1998) An algorithm for selection of instrumentation levels in scoliosis. Eur Spine J 7:88–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Blondel B, Wickman AM, Apazidis A et al (2013) Selection of fusion levels in adults with spinal deformity: an update. Spine J 13:464–474. doi:10.1016/j.spinee.2012.11.046

    Article  PubMed  Google Scholar 

  39. Kim YJ, Bridwell KH, Lenke LG et al (2007) Is the T9, T11, or L1 the more reliable proximal level after adult lumbar or lumbosacral instrumented fusion to L5 or S1? Spine 32:2653–2661. doi:10.1097/BRS.0b013e31815a5a9d

    Article  PubMed  Google Scholar 

  40. Cho K-J, Suk S-I, Park S-R et al (2013) Selection of proximal fusion level for adult degenerative lumbar scoliosis. Eur Spine J 22:394–401. doi:10.1007/s00586-012-2527-1

    Article  PubMed Central  PubMed  Google Scholar 

  41. Kuklo TR (2006) Principles for selecting fusion levels in adult spinal deformity with particular attention to lumbar curves and double major curves. Spine 31:S132–S138. doi:10.1097/01.brs.0000236023.08226.90

    Article  PubMed  Google Scholar 

  42. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 8:1169–1181. doi:10.5455/aces.20130422110147

    Google Scholar 

  43. O’Shaughnessy BA, Bridwell KH, Lenke LG et al (2012) Does a long-fusion “T3-sacrum” portend a worse outcome than a short-fusion “T10-sacrum” in primary surgery for adult scoliosis? Spine 37:884–890. doi:10.1097/BRS.0b013e3182376414

    Article  PubMed  Google Scholar 

  44. Bridwell KH (2004) Selection of instrumentation and fusion levels for scoliosis: where to start and where to stop. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2004. J Neurosurg Spine 1:1–8. doi:10.3171/spi.2004.1.1.0001

    Article  PubMed  Google Scholar 

  45. Lamartina C, Berjano P (2014) Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J 23:1177–1189. doi:10.1007/s00586-014-3227-9

    Article  PubMed  Google Scholar 

  46. Kim YJ, Bridwell KH, Lenke LG et al (2006) Sagittal thoracic decompensation following long adult lumbar spinal instrumentation and fusion to L5 or S1: causes, prevalence, and risk factor analysis. Spine 31:2359–2366. doi:10.1097/01.brs.0000238969.59928.73

    Article  PubMed  Google Scholar 

  47. Polly DW, Hamill CL, Bridwell KH (2006) Debate: to fuse or not to fuse to the sacrum, the fate of the L5–S1 disc. Spine 31:S179–S184. doi:10.1097/01.brs.0000234761.87368.ee

    Article  PubMed  Google Scholar 

  48. Edwards CC, Bridwell KH, Patel A et al (2003) Thoracolumbar deformity arthrodesis to L5 in adults: the fate of the L5-S1 disc. Spine 28:2122–2131. doi:10.1097/01.BRS.0000084266.37210.85

    Article  PubMed  Google Scholar 

  49. Kuhns CA, Bridwell KH, Lenke LG et al (2007) Thoracolumbar deformity arthrodesis stopping at L5: fate of the L5–S1 disc, minimum 5-year follow-up. Spine 32:2771–2776. doi:10.1097/BRS.0b013e31815a7ece

    Article  PubMed  Google Scholar 

  50. Weiner DK, Distell B, Studenski S et al (1994) Does radiographic osteoarthritis correlate with flexibility of the lumbar spine? J Am Geriatr Soc 42:257–263

    CAS  PubMed  Google Scholar 

  51. Emami A, Deviren V, Berven S et al (2002) Outcome and complications of long fusions to the sacrum in adult spine deformity. Spine 27:776–786. doi:10.1097/00007632-200204010-00017

    Article  PubMed  Google Scholar 

  52. Harimaya K, Mishiro T, Lenke LG et al (2011) Etiology and revision surgical strategies in failed lumbosacral fixation of adult spinal deformity constructs. Spine 36:1701–1710. doi:10.1097/BRS.0b013e3182257eaf

    Article  PubMed  Google Scholar 

  53. Tsuchiya K, Bridwell KH, Kuklo TR et al (2006) Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine 31:303–308. doi:10.1097/01.brs.0000197193.81296.f1

    Article  PubMed  Google Scholar 

  54. Tumialán LM, Mummaneni PV (2008) Long-segment spinal fixation using pelvic screws. Neurosurgery 63:183–190. doi:10.1227/01.NEU.0000320431.66632.D5

    Article  PubMed  Google Scholar 

  55. Kebaish KM (2010) Sacropelvic fixation: techniques and complications. Spine 35:2245–2251. doi:10.1097/BRS.0b013e3181f5cfae

    Article  PubMed  Google Scholar 

  56. Kim HJ, Boachie-Adjei O, Shaffrey CI et al (2014) Upper thoracic versus lower thoracic upper instrumented vertebrae endpoints have similar outcomes and complications in adult scoliosis. Spine 39:E795–E799. doi:10.1097/BRS.0000000000000339

    Article  PubMed  Google Scholar 

  57. Scheer JK, Lafage V, Smith JS et al (2014) Maintenance of radiographic correction at 2 years following lumbar pedicle subtraction osteotomy is superior with upper thoracic compared with thoracolumbar junction upper instrumented vertebra. Eur Spine J. doi:10.1007/s00586-014-3391-y

    PubMed  Google Scholar 

  58. Van Royen BJ, De Gast a (1999) Lumbar osteotomy for correction of thoracolumbar kyphotic deformity in ankylosing spondylitis. A structured review of three methods of treatment. Ann Rheum Dis 58:399–406

    Article  PubMed Central  PubMed  Google Scholar 

  59. Cw D (1957) Posterior elementectomy in ankylosing arthritis of the spine. Clin Orthop Relat Res 10:274–281

    Google Scholar 

  60. Van Royen BJ, Gerhard S (1995) Closing-wedge posterior osteotomy for ankylosing spondylitis. Partial corporectomy and transpedicular fixation in 22 cases. J Bone Joint Surg Br 77:117–121

    PubMed  Google Scholar 

  61. Camargo FP, Cordeiro EN, Napoli MM (1986) Corrective osteotomy of the spine in ankylosing spondylitis. Experience with 66 cases. Clin Orthop Related Res 208:157–167

    Google Scholar 

  62. Van Royen BJ, De Gast a, Smit TH (2000) Deformity planning for sagittal plane corrective osteotomies of the spine in ankylosing spondylitis. Eur Spine J 9:492–498

    Article  PubMed Central  PubMed  Google Scholar 

  63. Lafage V, Schwab F, Vira S et al (2011) Does vertebral level of pedicle subtraction osteotomy correlate with degree of spinopelvic parameter correction? J Neurosurg Spine 14:184–191. doi:10.3171/2010.9.SPINE10129

    Article  PubMed  Google Scholar 

  64. Lafage V, Diebo B, Schwab F (2014) Spinal alignment formulas and operative planning tools. American Academy of Orthopaedic Surgeons (AAOS) Instructional Course Lectures

  65. Glattes RC, Bridwell KH, Lenke LG et al (2005) Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine 30:1643–1649

    Article  PubMed  Google Scholar 

  66. Kim Y, Jung J, Bridwell KH, Lenke LG et al (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion. Spine 33:2179–2184

    Article  PubMed  Google Scholar 

  67. Yagi M, Akilah KB, Boachie-Adjei O (2011) Incidence, risk factors and classification of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Spine 36:E60–E68. doi:10.1097/BRS.0b013e3181eeaee2

    Article  PubMed  Google Scholar 

  68. Hart RA, McCarthy I, Ames CP et al (2013) Proximal junctional kyphosis and proximal junctional failure. Neurosurg Clin N America 24:213–218. doi:10.1016/j.nec.2013.01.001

    Article  Google Scholar 

  69. Cho SK, Shin JI, Kim YJ (2014) Proximal junctional kyphosis following adult spinal deformity surgery. Eur Spine J. doi:10.1007/s00586-014-3531-4

    Google Scholar 

  70. Husson J-L, Mallet J-F, Parent H et al (2010) The lumbar-pelvic-femoral complex: applications in spinal imbalance. Orthop Traumatol Surg Res 96:1–9. doi:10.1016/j.otsr.2010.03.006

    Article  Google Scholar 

  71. Kallman DA, Plato CC, Tobin JD (1990) The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol 45:82–88

    Article  Google Scholar 

  72. Balogun JA, Akindele KA, Nihinlola JO, Marzouk DK (1994) Age-related changes in balance performance. Disabil Rehabil 16:58–62

    Article  CAS  PubMed  Google Scholar 

  73. Lafage V, Ames C, Schwab F et al (2012) Changes in thoracic kyphosis negatively impact sagittal alignment after lumbar pedicle subtraction osteotomy: a comprehensive radiographic analysis. Spine 37:E180–E187. doi:10.1097/BRS.0b013e318225b926

    Article  PubMed  Google Scholar 

  74. Kebaish KM, Martin CT, O’Brien JR et al (2013) Use of vertebroplasty to prevent proximal junctional fractures in adult deformity surgery: a biomechanical cadaveric study. Spine J 13:1897–1903. doi:10.1016/j.spinee.2013.06.039

    Article  PubMed  Google Scholar 

  75. Cammarata M, Aubin C-É, Wang X, Mac-Thiong J-M (2014) Biomechanical risk factors for proximal junctional kyphosis: a detailed numerical analysis of surgical instrumentation variables. Spine 39:E500–E507. doi:10.1097/BRS.0000000000000222

    Article  PubMed  Google Scholar 

  76. Glassman SD, Berven S, Bridwell K et al (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682–688

    Article  PubMed  Google Scholar 

  77. Daubs MD, Lenke LG, Bridwell KH et al (2013) Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity? Spine 38:476–483. doi:10.1097/BRS.0b013e3182846eb3

    Article  PubMed  Google Scholar 

  78. Gupta MC, Boachie-Adjei O, Cunningham ME et al (2013) Coronal imbalance may be neglected in patients undergoing majority sagittal deformity correction. International Meeting on Advanced Spine Techniques (IMAST)

  79. Moal B, Schwab FJ, Ames CP et al (2014) Radiographic outcomes of adult spinal deformity correction: a critical analysis of variability and failures across deformity patterns. Spine Deformity 2:219–225. doi:10.1016/j.jspd.2014.01.003

    Article  Google Scholar 

  80. Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J 22(Suppl 2):S242–S253. doi:10.1007/s00586-012-2426-5

    Article  PubMed  Google Scholar 

  81. Marsden CD, Duvoisin R (1980) Scoliosis and Parkinson’s disease. Arch Neurol 37:253–254

    Article  CAS  PubMed  Google Scholar 

  82. Doherty KM, Van de Warrenburg BP, Peralta MC et al (2011) Postural deformities in Parkinson’s disease. Lancet Neurol 10:538–549. doi:10.1016/S1474-4422(11)70067-9

    Article  PubMed  Google Scholar 

  83. Bourghli A, Guérin P, Vital J et al (2012) Posterior spinal fusion from T2 to the sacrum for the management of major deformities in patients with Parkinson disease: a retrospective review with analysis of complications. J Spinal Disord Tech 25:E53–E60. doi:10.1097/BSD.0b013e3182496670

    Article  PubMed  Google Scholar 

  84. Babat LB, McLain RF, Bingaman W et al (2004) Spinal surgery in patients with Parkinson’s disease: construct failure and progressive deformity. Spine 29:2006–2012. doi:10.1097/01.brs.0000138306.02425.21

    Article  PubMed  Google Scholar 

  85. Oh JK, Smith JS, Shaffrey CI et al (2014) Sagittal spinopelvic malalignment in Parkinson disease: prevalence and associations with disease severity. Spine 39:E833–E841. doi:10.1097/BRS.0000000000000366

    Article  PubMed  Google Scholar 

  86. Maetzler W, Mancini M, Liepelt-Scarfone I et al (2012) Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS ONE 7:e32240. doi:10.1371/journal.pone.0032240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Lafage V, Schwab F, Vira S et al (2011) Spino-pelvic parameters after surgery can be predicted: a preliminary formula and validation of standing alignment. Spine 36:1037–1045

    Article  PubMed  Google Scholar 

  88. Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bulletin de l’Académie nationale de médecine 189:287–297 (discussion 297–300)

    PubMed  Google Scholar 

  89. Newton PO, Fujimori T, Daan J et al (2014) 3D analysis: the truth about the “Hypokyphosing Effect of Pedicle Screws” in AIS. SRS 49th annual meeting

  90. Dubousset J, Challier V, Farcy J-P et al (2014) Spinal alignment versus spinal balance. Global spinal alignment: principles, pathologies, and procedures book

  91. Moal B, Bronsard N, Raya JG et al (2014) Preliminary results on quantitative volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity (unpublished data)

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Lafage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diebo, B.G., Henry, J., Lafage, V. et al. Sagittal deformities of the spine: factors influencing the outcomes and complications. Eur Spine J 24 (Suppl 1), 3–15 (2015). https://doi.org/10.1007/s00586-014-3653-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3653-8

Keywords

Navigation