Skip to main content

Advertisement

Log in

Cervical spine injuries and flexibilities following axial impact with lateral eccentricity

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Determine the effects of dynamic injurious axial compression applied at various lateral eccentricities (lateral distance to the centre of the spine) on mechanical flexibilities and structural injury patterns of the cervical spine.

Methods

13 three-vertebra human cadaver cervical spine specimens (6 C3–5, 3 C4–6, 2 C5–7, 2 C6–T1) were subjected to pure moment flexibility tests (±1.5 Nm) before and after impact trauma was applied in two groups: low and high lateral eccentricity (1 and 150 % of the lateral diameter of the vertebral body, respectively). Relative range of motion (ROM) and relative neutral zone (NZ) were calculated as the ratio of post and pre-trauma values. Injuries were diagnosed by a spine surgeon and scored. Classification functions were developed using discriminant analysis.

Results

Low and high eccentric loading resulted in primarily bony fractures and soft tissue injuries, respectively. Axial impacts with high lateral eccentricities resulted in greater spinal motion in lateral bending [median relative ROM 3.5 (interquartile range, IQR 2.3) vs. 1.4 (IQR 0.5) and median relative NZ 4.7 (IQR 3.7) vs. 2.3 (IQR 1.1)] and in axial rotation [median relative ROM 5.3 (IQR 13.7) vs. 1.3 (IQR 0.5), p < 0.05 for all comparisons] than those that resulted from low eccentricity impacts. The developed classification functions had 92 % classification accuracy.

Conclusions

Dynamic axial compression loading of the cervical spine with high lateral eccentricities produced primarily soft tissue injuries resulting in more post-injury spinal flexibility in lateral bending and axial rotation than that associated with the bony fractures resulting from low eccentricity impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldberg W, Mueller C, Panacek E, Tigges S, Hoffman JR, Mower WR (2001) Distribution and patterns of blunt traumatic cervical spine injury. Ann Emerg Med 38(1):17–21

    Article  CAS  PubMed  Google Scholar 

  2. Swischuk LE (2000) Emergency imaging of the acutely ill or injured child, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  3. Schaaf RE, Gehweiler JA, Miller MD, Powers B (1978) Lateral hyperflexion injuries of the cervical spine. Skelet Radiol 3:73–78

  4. Roaf R (1963) Lateral flexion injuries of the cervical spine. J Bone Joint Surg Br 45-B(1):36–38

  5. Davis JW, Phreaner DL, Hoyt DB, Mackersie RC (1993) The etiology of missed cervical spine injuries. J Trauma 34(3):342–346

    Article  CAS  PubMed  Google Scholar 

  6. Priebe MM, Chiodo AE, Scelza WM, Kirshblum SC, Wuermser LA, Ho CH (2007) Spinal cord injury medicine. Economic and societal issues in spinal cord injury. Arch Phys Med Rehabil 88(3 Suppl 1):S84–S88

    Article  PubMed  Google Scholar 

  7. Allen BL Jr, Ferguson RL, Lehmann TR, O’Brien RP (1982) A mechanistic classification of closed, indirect fractures and dislocations of the lower cervical spine. Spine (Phila Pa 1976) 7(1):1–27

    Article  Google Scholar 

  8. Thompson WL, Stiell IG, Clement CM, Brison RJ (2009) Association of injury mechanism with the risk of cervical spine fractures. Can J Emerg Med 11(1):14–22

    Google Scholar 

  9. Scher AT (1981) Radiological assessment of lateral flexion injuries of the cervical spine. S Afr Med J 60(26):983–985

    CAS  PubMed  Google Scholar 

  10. Chrisman OD, Snook GA, Stanitis JM, Keedy VA (1965) Lateral-flexion neck injuries in athletic competition. J Am Med Assoc

  11. McCoy R, Chou C (2007) A study of kinematics of occupants restrained with seat belt systems in component rollover tests. SAE World Congress & Exhibition, Detroit

    Book  Google Scholar 

  12. Raddin J, Cormier J, Smyth B, Croteau J, Cooper E (2009) Compressive neck injury and its relationship to head contact and Torso motion during vehicle rollovers. SAE World Congress & Exhibition, Detroit

    Book  Google Scholar 

  13. Bidez MW, Cochran JE Jr, King D, Burke DS 3rd (2007) Occupant dynamics in rollover crashes: influence of roof deformation and seat belt performance on probable spinal column injury. Ann Biomed Eng 35(11):1973–1988

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bahling GS, Bundorf RT, Kaspzyk GS, Moffatt EA, Orlowski KF, Stocke JE (1990) Rollover and drop tests—the influence of roof strength on injury mechanics using belted dummies. 34th Stapp Car Crash Conference, Society of Automotive Engineers, Orlando

  15. Howard RP, Hatsell CP, Raddin JH (1999) Initial occupant kinematics in the high velocity vehicle rollover. In: International Body Engineering Conference and Exposition, Detroit, Sep 28–30. SAE, Warrendale, pp 1–18

  16. Foster JB, Kerrigan JR, Nightingale RW, Funk JR, Cormier J, Bose D, Sochor MR, Ridella SA, Ash JH (2012) Crandall JR analysis of cervical spine injuries and mechanisms for CIREN rollover crashes. In: International Research Council on the Biomechanics of Injury (IRCOBI) Conference Proceedings, Dublin

  17. Halliday AL, Henderson BR, Hart BL, Benzel EC (1997) The management of unilateral lateral mass/facet fractures of the subaxial cervical spine: the use of magnetic resonance imaging to predict instability. Spine (Phila Pa 1976) 22(22):2614–2621

    Article  CAS  Google Scholar 

  18. Lifeso RM, Colucci MA (2000) Anterior fusion for rotationally unstable cervical spine fractures. Spine (Phila Pa 1976) 25(16):2028–2034

    Article  CAS  Google Scholar 

  19. Lee SH, Sung JK (2009) Unilateral lateral mass-facet fractures with rotational instability: new classification and a review of 39 cases treated conservatively and with single segment anterior fusion. J Trauma 66(3):758–767

    Article  PubMed  Google Scholar 

  20. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. J.B. Lippincott Company, New York

    Google Scholar 

  21. Myers BS, Winkelstein BA (1995) Epidemiology, classification, mechanism, and tolerance of human cervical spine injuries. Crit Rev Biomed Eng 23(5–6):307–409

    Article  CAS  PubMed  Google Scholar 

  22. Winkelstein BA, Myers BS (1997) The biomechanics of cervical spine injury and implications for injury prevention. Med Sci Sports Exerc 29(7 Suppl):S246–S255

    Article  CAS  PubMed  Google Scholar 

  23. Carter JW, Ku GS, Nuckley DJ, Ching RP (2002) Tolerance of the cervical spine to eccentric axial compression. Stapp Car Crash J 46:441–459

  24. Southern EP, Oxland TR, Panjabi MM, Duranceau JS (1990) Cervical spine injury patterns in three modes of high-speed trauma: a biomechanical porcine model. J Spinal Disord 3(4):316–328

    CAS  PubMed  Google Scholar 

  25. Pintar FA, Yoganandan N, Pesigan M, Reinartz J, Sances AJ, Cusick JF (1995) Cervical vertebral strain measurements under axial and eccentric loading. J Biomech Eng 117(4):474–478

    Article  CAS  PubMed  Google Scholar 

  26. Crowell RR, Shea M, Edwards WT, Clothiaux PL, White AA, Hayes WC (1993) Cervical injuries under flexion and compression loading. J Spinal Disord 6(2):175–181

    Article  CAS  PubMed  Google Scholar 

  27. Shea M, Edwards WT, White AA, Hayes WC (1991) Variations of stiffness and strength along the human cervical spine. J Biomech 24(2):95–107

    Article  CAS  PubMed  Google Scholar 

  28. Selecki BR, Williams HBL (1970) Injuries to the cervical spine and cord in man. Mervyn Archdall Medical Monograph Number 7. Australasian Medical Publishing Company Ltd, Sydney

    Google Scholar 

  29. Toomey DE, Mason MJ, Hardy WN, Yang KH, Kopacz JM, Van Ee C (2009) Exploring the role of lateral bending postures and asymmetric loading on cervical spine compression responses. In: International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Nov 13–19, 2009. ASME

  30. Kifune M, Panjabi MM, Arand M, Liu W (1995) Fracture pattern and instability of thoracolumbar injuries. Eur Spine J 4(2):98–103

    Article  CAS  PubMed  Google Scholar 

  31. Panjabi MM, Duranceau JS, Oxland TR, Bowen CE (1989) Multidirectional instabilities of traumatic cervical spine injuries in a porcine model. Spine (Phila Pa 1976) 14(10):1111–1115

    Article  CAS  Google Scholar 

  32. Zhu Q, Ouyang J, Lu W, Lu H, Li Z, Guo X, Zhong S (1999) Traumatic instabilities of the cervical spine caused by high-speed axial compression in a human model. An in vitro biomechanical study. Spine (Phila Pa 1976) 24(5):440–444

    Article  CAS  Google Scholar 

  33. Hartwig E, Kettler A, Schultheiss M, Kinzl L, Claes L, Wilke HJ (2004) In vitro low-speed side collisions cause injury to the lower cervical spine but do not damage alar ligaments. Eur Spine J 13(7):590–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Maak TG, Ivancic PC, Tominaga Y, Panjabi MM (2007) Side impact causes multiplanar cervical spine injuries. J Trauma 63(6):1296–1307

    Article  PubMed  Google Scholar 

  35. Panjabi MM, Ivancic PC, Tominaga Y, Wang JL (2005) Intervertebral neck injury criterion for prediction of multiplanar cervical spine injury due to side impacts. Traffic Inj Prevent 6(4):387–397

    Article  Google Scholar 

  36. Walraevens J, Liu B, Meersschaert J, Demaerel P, Delye H, Depreitere B, Vander Sloten J, Goffin J (2009) Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints. Eur Spine J 18(3):358–369

    Article  PubMed Central  PubMed  Google Scholar 

  37. Goertzen DJ, Lane C, Oxland TR (2004) Neutral zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocol. An in vitro porcine investigation. J Biomech 37(2):257–261

    Article  PubMed  Google Scholar 

  38. Van Toen C, Melnyk AD, Street J, Oxland TR, Cripton PA (2014) The effect of lateral eccentricity on failure loads, kinematics, and canal occlusions of the cervical spine in axial impact. J Biomech 47(5):1164–1172

    Article  PubMed  Google Scholar 

  39. Carter JW (2002) Compressive cervical spine injury: the effect of injury mechanism on structural injury pattern and neurologic injury potential. PhD dissertation, University of Washington, Seattle

    Google Scholar 

  40. Afifi AA, Clark V (1996) Computer-aided multivariate analysis, 3rd edn. Chapman & Hall, London

    Book  Google Scholar 

  41. Sharma S (1996) Applied multivariate techniques. John Wiley & Sons Inc., New York

    Google Scholar 

  42. Ivancic PC (2014) Cervical spine instability following axial compression injury: a biomechanical study. Orthop Traumatol Surg Res 100(1):127–133

    Article  CAS  PubMed  Google Scholar 

  43. McIntosh AS, Kallieris D, Frechede B (2007) Neck injury tolerance under inertial loads in side impacts. Accid Anal Prev 39(2):326–333

    Article  PubMed  Google Scholar 

  44. Patrick LM, Chou CC (1976) Response of the human neck in flexion, extension and lateral flexion. Vehicle Research Institute (report no. VRI-7.3), Warrendale

    Google Scholar 

  45. Yoganandan N, Humm J, Pintar FA, Wolfla CE, Maiman DJ (2011) Lateral neck injury assessments in side impact using post mortem human subject tests. In: 55th Annals of Advances in Automotive Medicine (AAAM) Conference, Paris. AAAM

  46. Yoganandan N, Pintar FA, Maiman DJ, Philippens M, Wismans J (2009) Neck forces and moments and head accelerations in side impact. Traffic Inj Prevent 10(1):51–57

    Article  Google Scholar 

  47. Klaus G, Kallieris D (1983) Side impact: a comparison between HSRI, APROD and hybrid II dummies and cadavers. Society of Automotive Engineers, Warrendale, pp 365–381

  48. Horsch JD, Schneider DC, Kroell CK, Raasch FD (1979) Response of belt restrained subjects in simulated lateral impact. Society of Automotive Engineers, Warrendale, pp 69–103

  49. Kallieris D, Rizzetti A, Mattern R, Thunnissen J, Philippens M (1996) Cervical human spine loads during traumatomechanical investigations. In: International Research Council on the Biomechanics of Impact Conference (IRCOBI), Dublin, pp 89–106

  50. Kallieris D, Schmidt G (1990) Neck response and injury assessment using cadavers and the US-SID for far-side lateral impacts of rear seat occupants with inboard-anchored shoulder belts. 34th Stapp Car Crash Conference, Orlando

  51. Kettler A, Fruth K, Hartwig E, Claes L, Wilke HJ (2004) Correlation between neck injury risk and impact severity parameters in low-speed side collisions. Spine (Phila Pa 1976) 29(21):2404–2409

    Article  Google Scholar 

  52. Panjabi MM, Duranceau J, Goel VK, Oxland TR, Takata K (1991) Cervical human vertebrae: quantitative three-dimensional anatomy of the middle and lower regions. Spine (Phila Pa 1976) 16(6):861–869

    Article  CAS  Google Scholar 

  53. Leechavengvongs S, Witoonchart K, Uerpairojkit C, Thuvasethakul P (2003) Nerve transfer to deltoid muscle using the nerve to the long head of the triceps, part II: a report of 7 cases. J Hand Surg Am 28(4):633–638

    Article  PubMed  Google Scholar 

  54. Fehlings MG, Vaccaro A, Wilson JSR, Singh A, Cadotte DW, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2):e32037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. DeVivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50(5):365–372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the assistance of Ms. Angela Melnyk, M.A.Sc. in helping to carry out the experiments and for the financial support from the Natural Sciences and Engineering Research Council.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Cripton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Toen, C., Street, J., Oxland, T.R. et al. Cervical spine injuries and flexibilities following axial impact with lateral eccentricity. Eur Spine J 24, 136–147 (2015). https://doi.org/10.1007/s00586-014-3612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3612-4

Keywords

Navigation