Skip to main content
Log in

Diffusion-weighted magnetic resonance imaging for the diagnosis of patients with lumbar nerve root entrapment syndromes: results from a pilot study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript



Lumbar nerve root entrapment syndromes cause radicular signs and symptoms in the affected leg. The applicability of diffusion-weighted imaging (DWI) for the assessment of lower lumbar nerves (L4–S1) has been demonstrated. The purpose of this pilot study was to establish DWI reference data for the all lumbosacral nerve roots (L1–S1) in a healthy, asymptomatic study population and to determine its potential as a diagnostic tool for patients with lumbar radicular syndromes.


20 asymptomatic healthy volunteers were included (average age 39 years (24–59 years; n = 10 female, n = 10 male). The lumbosacral spine was scanned twice in a standardized fashion (1.5 T Magnetom Avanto and 3 T Magnetom Skyra, Siemens AG Healthcare, Erlangen, Germany). A spin-echo type echo-planar (SE-EPI) sequence was used to determine axial ADC maps and measurements (length, width, and angulation) of the dorsal root ganglion (DRG) and distal spinal nerves (DSN). Disc pathology, lumbar foraminal stenosis and nerve root compromise were classified.


Using 3 T images 218 (91 %) lumbar nerve roots had no pathologic finding [1.5 T: 226 (94 %)]. All DRG and DSN could be visualized and identified on axial apparent diffusion coefficient (ADC). On average we measured ADC values of 1,231 mm2/s (SD 308 mm2/s) at the DRG for the 1.5 T scanner and 1,756 mm2/s (SD 465 mm2/s) for the 3 T scanner. There were no statistically significant gender or side differences in the 1.5 and 3 T images (p > 0.05). We noted an increase of the ADC values starting from cranial (L1: 1,444 mm2/s) to caudal (S1: 1,918 mm2/s). The average ADC value at the DSN was 1,018 mm2/s for the 1.5 T scanner compared to 1,589 mm2/s for the 3 T scanner (p < 0.001).


For the first time, we have established data for the DRG and DSN in human lumbosacral spinal nerves (L1–S1), using diffusion-weighted magnetic resonance imaging techniques. 3 T ADC maps have a higher signal to noise ratio, thus offering better image quality. Results from this study suggest that DWI has added value as new diagnostic tools for patients with symptomatic lumbar nerve root entrapment syndromes as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  1. Abramoff MD et al (2004) Biophotonics International 11:36–42


  1. Arnoldi C, Brodsky A, Cauchoix J et al. (1976) Lumbar spinal stenosis and nerve root entrapment syndromes. Definition and classification. Clin Orthop Relat Res (115):4–5

  2. Aota Y, Niwa T, Yoshikawa K et al (2007) Magnetic resonance imaging and magnetic resonance myelography in the presurgical diagnosis of lumbar foraminal stenosis. Spine 32:896–903. doi:10.1097/01.brs.0000259809.75760.d5

    Article  PubMed  Google Scholar 

  3. Herron LD (1989) Selective nerve root block in patient selection for lumbar surgery: surgical results. J Spinal Disord 2:75–79

    Article  CAS  PubMed  Google Scholar 

  4. Floeth FW, Stoffels G, Herdmann J et al (2011) Prognostic value of 18F-FDG PET in monosegmental stenosis and myelopathy of the cervical spinal cord. J Nucl Med 52:1385–1391. doi:10.2967/jnumed.111.091801

    Article  CAS  PubMed  Google Scholar 

  5. Eguchi Y, Ohtori S, Yamashita M et al (2010) Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment. Eur Spine J 19:1874–1882. doi:10.1007/s00586-010-1520-9

    Article  PubMed Central  PubMed  Google Scholar 

  6. Transfeldt E, Macnab I (2007) Macnab’s Backache. Lippincott Williams & Wilkins, New York

    Google Scholar 

  7. Pfirrmann CWA, Dora C, Schmid MR et al (2004) MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology 230:583–588. doi:10.1148/radiol.2302021289

    Article  PubMed  Google Scholar 

  8. Lee S, Lee JW, Yeom JS et al (2010) A practical MRI grading system for lumbar foraminal stenosis. Am J Roentgenol 194:1095–1098. doi:10.2214/AJR.09.2772

    Article  Google Scholar 

  9. Park HJ, Kim SS, Lee SY et al (2012) Clinical correlation of a new MR imaging method for assessing lumbar foraminal stenosis. AJNR Am J Neuroradiol 33:818–822. doi:10.3174/ajnr.A2870

    Article  CAS  PubMed  Google Scholar 

  10. Sugawara O, Atsuta Y, Iwahara T et al (1996) The effects of mechanical compression and hypoxia on nerve root and dorsal root ganglia. An analysis of ectopic firing using an in vitro model. Spine 21:2089–2094

    Article  CAS  PubMed  Google Scholar 

  11. Shen J, Wang H-Y, Chen J-Y, Liang B-L (2006) Morphologic analysis of normal human lumbar dorsal root ganglion by 3D MR imaging. AJNR Am J Neuroradiol 27:2098–2103

    CAS  PubMed  Google Scholar 

  12. Kuijper B, Tans JTJ, van der Kallen BF et al (2011) Root compression on MRI compared with clinical findings in patients with recent onset cervical radiculopathy. J Neurol Neurosurg Psychiatr 82:561–563. doi:10.1136/jnnp.2010.217182

    Article  PubMed  Google Scholar 

  13. Wassenaar M, Rijn RM, Tulder MW et al (2011) Magnetic resonance imaging for diagnosing lumbar spinal pathology in adult patients with low back pain or sciatica: a diagnostic systematic review. Eur Spine J 21:220–227. doi:10.1007/s00586-011-2019-8

    Article  PubMed Central  PubMed  Google Scholar 

  14. Song T, Chen W-J, Yang B et al (2011) Diffusion tensor imaging in the cervical spinal cord. Eur Spine J 20:422–428. doi:10.1007/s00586-010-1587-3

    Article  PubMed Central  PubMed  Google Scholar 

  15. Roberts N, Hogg D, Whitehouse GH, Dangerfield P (1998) Quantitative analysis of diurnal variation in volume and water content of lumbar intervertebral discs. Clin Anat 11:1–8. doi:10.1002/(SICI)1098-2353(1998)11:1<1:AID-CA1>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  16. Kingsley MI, D’silva LA, Jennings C et al (2012) Moderate-Intensity running causes intervertebral disc compression in young adults. Med Sci Sports Exerc 44:2199–2204. doi:10.1249/MSS.0b013e318260dbc1

    Article  PubMed  Google Scholar 

Download references

Conflict of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to Maximilian Reinhold.



Appendix 1

See Figs. 1, 2, 3, 4 5.

Fig. 2
figure 2

a L3 dorsal root ganglia in 3 T axial DWI image with a b value of 50 s/mm2. b Sample of L3 dorsal root ganglia in 3 T axial DWI image with a b value of 600 s/mm2

Fig. 3
figure 3

a 3 T coronal diffusion-weighted image of L4–L5 nerve roots with a better signal to noise ratio (SNR) but higher degree of distortion artifacts, e.g., presumed “kinking” of distal lumbar nerve, b Corresponding 1.5 T diffusion-weighted image with lower SNR, e.g., slightly more “diffuse” image appearance

Fig. 4
figure 4

a Numbers of disc pathology (yes/no) and level according to Transfeldt et al. [6], b Numbers of nerve root compromise (yes/no) and level according to Pfirrmann et al. [7], c Numbers of foraminal stenosis (yes/no) and level according to Lee et al. [8]

Fig. 5
figure 5

a ADC values (mean) of dorsal root ganglia (DRG) (mm2/s) and level (L1–S1). b ADC values (mean) of distal spinal nerve (DSN) (mm2/s) and level (L1–S1)

Appendix 2

See Tables 1, 2, 3, 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhold, M., Ederer, C., Henninger, B. et al. Diffusion-weighted magnetic resonance imaging for the diagnosis of patients with lumbar nerve root entrapment syndromes: results from a pilot study. Eur Spine J 24, 319–326 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: