Skip to main content
Log in

Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: a systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The debate on the effects and outcome of olfactory ensheathing cell (OEC) transplantation for the treatment of spinal cord injury (SCI) has remained unresolved for nearly 20 years. This study aimed to evaluate the safety and efficacy of OEC transplantation in chronic SCI patients.

Method

Electronic databases, including PubMed, the Cochrane Library, EMBASE, and MEDLINE, were searched to identify clinical therapeutic trials studying the use of OEC transplantation for SCI in humans. Each trial was analyzed in accordance with the criteria of the Cochrane Handbook 5.1.0 and MOOSE. Data were analyzed with Review Manager 5.2 and Meta-Analyst Beta 3.13 software.

Results

Eleven articles concerning 10 studies of 1,193 patients with chronic SCI treated with OEC transplantation were selected for review. All the articles had low methodological quality. Studies reported their outcomes using the American Spinal Injury Association (ASIA) Impairment Scale; the AISA motor, light touch, pinprick score; the Functional Independence Measure and (or) other measure methods. According to the available relevant data, the incidences of total adverse events and mortality were 7.68 % (n = 742) and 0.35 % (n = 566), respectively. The most frequently reported adverse events were fever, mild anemia, and syringomyelia; however, the statistical adverse events occurring in different studies were cerebrospinal fluid leakage (7.00 %, n = 586, 2 trials), sensory deterioration (0.70 %, n = 573, 2 trials), and both motor and sensory deterioration (0.68 %, n = 586, 2 trials).

Conclusions

Given the results from our study, we conclude that OEC transplantation appears to be safe, although the evidence for efficacy is modest and requires the support of prospective, randomized trials in larger cohorts of patients. Further randomized controlled trials utilizing strict therapy programs and implanted cell selections are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SCI:

Spinal cord injury

OECs:

Olfactory ensheathing cells

LP:

Lamina propria

OM:

Olfactory mucosa

OB:

Olfactory bulb

ASIA:

American Spinal Injury Association

MOOSE:

Meta-analysis of Observational Studies in Epidemiology

AIS:

American Spinal Injury Association (ASIA) Impairment Scale

FIM:

Functional independence measure

PVSEP:

Paravertebral sensory evoked potential

IANR-SCIFRS:

International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale

MRI:

Magnetic resonance imaging

EMG:

Electromyography

MAS:

Modified Ashworth Scale

SSEP:

Somatosensory evoked potentials

TMS:

Transcranial magnetic stimulation

WISCI:

Walking Index for Spinal Cord Injury

ISNCSCI:

International Standards for Neurological Classification of Spinal Cord Injury

References

  1. Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643

    Article  CAS  PubMed  Google Scholar 

  2. van Praag H et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  Google Scholar 

  3. Zigova T, Graziadei PP, Monti-Graziadei AG (1990) Olfactory bulb transplantation into the olfactory bulb of neonatal rats. Brain Res 513(2):315–319

  4. Zigova T, Graziadei PP, Monti-Graziadei AG (1992) Olfactory bulb transplantation into the olfactory bulb of neonatal rats: a WGA-HRP study. Brain Res 588(1):6–12

    Article  CAS  PubMed  Google Scholar 

  5. Ramon-Cueto A et al (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25(2):425–435

    Article  CAS  PubMed  Google Scholar 

  6. Imaizumi T et al (2000) Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nat Biotechnol 18(9):949–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277(5334):2000–2002

    Article  CAS  PubMed  Google Scholar 

  8. Franklin RJ et al (1996) Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17(3):217–224

    Article  CAS  PubMed  Google Scholar 

  9. Ramon-Cueto A, Nieto-Sampedro M (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol 127(2):232–244

    Article  CAS  PubMed  Google Scholar 

  10. Lu J et al (2002) Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 125(Pt 1):14–21

    Article  PubMed  Google Scholar 

  11. Cowan CM, Roskams AJ (2002) Apoptosis in the mature and developing olfactory neuroepithelium. Microsc Res Tech 58(3):204–215

    Article  CAS  PubMed  Google Scholar 

  12. Roloff F et al (2013) Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro. BMC Neurosci 14:141

    Article  PubMed Central  PubMed  Google Scholar 

  13. Forni PE, Wray S (2012) Neural crest and olfactory system: new prospective. Mol Neurobiol 46(2):349–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chuah MI, Teague R (1999) Basic fibroblast growth factor in the primary olfactory pathway: mitogenic effect on ensheathing cells. Neuroscience 88(4):1043–1050

    Article  CAS  PubMed  Google Scholar 

  15. Boruch AV et al (2001) Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia 33(3):225–229

    Article  CAS  PubMed  Google Scholar 

  16. Senior K (2002) Olfactory ensheathing cells to be used in spinal-cord repair trial. Lancet Neurol 1(5):269

    Article  PubMed  Google Scholar 

  17. Feron F et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128(Pt 12):2951–2960

    Article  CAS  PubMed  Google Scholar 

  18. Huang H et al (2006) Influence factors for functional improvement after olfactory ensheathing cell transplantation for chronic spinal cord injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 20(4):434–438

    PubMed  Google Scholar 

  19. Lima C et al (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29(3):191–203 (discussion 204–6)

    PubMed Central  PubMed  Google Scholar 

  20. Lu J et al (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 889(1–2):344–357

    Article  CAS  PubMed  Google Scholar 

  21. Huard JM et al (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400(4):469–486

    Article  CAS  PubMed  Google Scholar 

  22. Clarkson ED et al (1998) Strands of embryonic mesencephalic tissue show greater dopamine neuron survival and better behavioral improvement than cell suspensions after transplantation in parkinsonian rats. Brain Res 806(1):60–68

    Article  CAS  PubMed  Google Scholar 

  23. Boyd JG et al (2004) LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc Natl Acad Sci USA 101(7):2162–2166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lopez-Vales R et al (2006) Acute and delayed transplantation of olfactory ensheathing cells promote partial recovery after complete transection of the spinal cord. Neurobiol Dis 21(1):57–68

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Vales R et al (2007) Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia 55(3):303–311

    Article  PubMed  Google Scholar 

  26. Imaizumi T, Lankford KL, Kocsis JD (2000) Transplantation of olfactory ensheathing cells or Schwann cells restores rapid and secure conduction across the transected spinal cord. Brain Res 854(1–2):70–78

    Article  CAS  PubMed  Google Scholar 

  27. Chuah MI et al (2004) Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord. Exp Neurol 185(1):15–25

    Article  CAS  PubMed  Google Scholar 

  28. Richter MW et al (2005) Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. J Neurosci 25(46):10700–10711

    Article  CAS  PubMed  Google Scholar 

  29. Huang H et al (2006) Safety of fetal olfactory ensheathing cell transplantation in patients with chronic spinal cord injury. A 38-month follow-up with MRI. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 20(4):439–443

    PubMed  Google Scholar 

  30. Guest J, Herrera LP, Qian T (2006) Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb-derived cells. Spinal Cord 44(3):135–142

    Article  CAS  PubMed  Google Scholar 

  31. Huang H et al (2012) Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury. Cell Transplant 21(Suppl 1):S23–S31

    Article  PubMed  Google Scholar 

  32. Tabakow P et al. (2013) Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant (22):1591–1612

  33. Tetzlaff W et al (2011) A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 28(8):1611–1682

    Article  PubMed Central  PubMed  Google Scholar 

  34. Li Y, Li D, Raisman G (2005) Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the ‘pathway hypothesis’. J Neurocytol 34(3–5):343–351

    Article  PubMed  Google Scholar 

  35. Windus LC et al (2010) Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions. Cell Mol Life Sci 67(10):1735–1750

    Article  CAS  PubMed  Google Scholar 

  36. Jani HR, Raisman G (2004) Ensheathing cell cultures from the olfactory bulb and mucosa. Glia 47(2):130–137

    Article  PubMed  Google Scholar 

  37. Paviot A et al (2011) Efficiency of laryngeal motor nerve repair is greater with bulbar than with mucosal olfactory ensheathing cells. Neurobiol Dis 41(3):688–694

    Article  PubMed  Google Scholar 

  38. Mayeur A et al (2013) Potential of olfactory ensheathing cells from different sources for spinal cord repair. PLoS One 8(4):e62860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mackay-Sim A et al (2008) Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 131(Pt 9):2376–2386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lima C et al (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24(1):10–22

    Article  PubMed  Google Scholar 

  41. Huang H et al (2003) Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 116(10):1488–1491

    Google Scholar 

  42. Wu J et al (2012) Clinical observation of fetal olfactory ensheathing glia transplantation (OEGT) in patients with complete chronic spinal cord injury. Cell Transplant 21(Suppl 1):S33–S37

    Article  PubMed  Google Scholar 

  43. Bohbot A (2010) Olfactory ensheathing glia transplantation combined with LASERPONCTURE in human spinal cord injury: results measured by electromyography monitoring. Cell Transplant 19(2):179–184

    Article  PubMed  Google Scholar 

  44. Rabinovich SS et al (2003) Transplantation treatment of spinal cord injury patients. Biomed Pharmacother 57(9):428–433

    Article  PubMed  Google Scholar 

  45. Committee M et al (2012) International standards for neurological classification of spinal cord injury, revised 2011. Top Spinal Cord Inj Rehabil 18(1):85–99

    Article  Google Scholar 

  46. Deeks JJ, Higgins JPT, Altman DG (2006) Analysing and presenting results. In: Higgins JPT, Green S (eds) Cochrane handbook for systematic reviews of interventions 4.2.6; Section 8. The Cochrane Library, Issue no 4. Wiley, Chichester, UK

  47. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  48. Higgins JP et al (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed Central  PubMed  Google Scholar 

  49. Egger M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lau J et al (2006) The case of the misleading funnel plot. BMJ 333(7568):597–600

    Article  PubMed Central  PubMed  Google Scholar 

  51. Rao Y et al (2013) Clinical application of olfactory ensheathing cells in the treatment of spinal cord injury. J Int Med Res 41(2):473–481

    Article  CAS  PubMed  Google Scholar 

  52. Huang H et al (2009) Olfactory ensheathing cells transplantation for central nervous system diseases in 1,255 patients. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 23(1002–1892):14–20

    CAS  PubMed  Google Scholar 

  53. Dobkin BH, Curt A, Guest J (2006) Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair 20(1):5–13

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Adnan, H., Xu, B. et al. Effects of transplantation of olfactory ensheathing cells in chronic spinal cord injury: a systematic review and meta-analysis. Eur Spine J 24, 919–930 (2015). https://doi.org/10.1007/s00586-014-3416-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3416-6

Keywords

Navigation