Advertisement

European Spine Journal

, Volume 23, Issue 7, pp 1407–1413 | Cite as

Body posture and backpack loading: an upright magnetic resonance imaging study of the adult lumbar spine

  • Stephen Shymon
  • Alan R. Hargens
  • Lawrence A. Minkoff
  • Douglas G. Chang
Original Article

Abstract

Purpose

Axial loading of the spine while supine, simulating upright posture, decreases intervertebral disc (IVD) height and lumbar length and increases lumbar lordosis. The purpose of this study is to measure the adult lumbar spine’s response to upright posture and a backpack load using upright magnetic resonance imaging (MRI). We hypothesize that higher spinal loads, while upright and with a backpack, will compress lumbar length and IVD height as well as decrease lumbar lordosis.

Methods

Six volunteers (45 ± 6 years) underwent 0.6 T MRI scans of the lumbar spine while supine, upright, and upright with a 10 % body weight (BW) backpack. Main outcomes were IVD height, lumbar spinal length (distance between anterior–superior corners of L1 and S1), and lumbar lordosis (Cobb angle between the superior endplates of L1 and S1).

Results

The 10 % BW load significantly compressed the L4–L5 and L5–S1 IVDs relative to supine (p < 0.05). The upright and upright plus 10 % BW backpack conditions significantly compressed the anterior height of L5–S1 relative to supine (p < 0.05), but did not significantly change the lumbar length or lumbar lordosis.

Conclusions

The L4–L5 and L5–S1 IVDs compress, particularly anteriorly, when transitioning from supine to upright position with a 10 % BW backpack. This study is the first radiographic analysis to describe the adult lumbar spine wearing common backpack loads. The novel upright MRI protocol described allows for functional, in vivo, loaded measurements of the spine that enables the study of spinal biomechanics and therapeutic interventions.

Keywords

Disc compression Backpack MRI Upright MRI Intervertebral disc 

Notes

Acknowledgments

The authors would like to gratefully acknowledge the participation of our six subjects. We thank JR Bachman for technical support and help with revisions. We thank Dr. Brandon Macias for help with manuscript editing, Dr. Stephen Chiang for his assistance with MR imaging and analysis, Clifford Mao for his help with the repeatability measurements, Dr. Lin Liu for her help with the statistical analysis, and Dr. Steven Garfin for support. This study was supported by the National Aeronautics and Space Administration Grant NNX10AM18G and the UCSD Clinical Translational Research Institute fellowship award.

Conflict of interest

None.

References

  1. 1.
    Alyas F, Connell D, Saifuddin A (2008) Upright positional MRI of the lumbar spine. Clin Radiol 63:1035–1048PubMedCrossRefGoogle Scholar
  2. 2.
    Saifuddin A, Blease S, MacSweeney E (2003) Axial loaded MRI of the lumbar spine. Clin Radiol 58:661–671PubMedCrossRefGoogle Scholar
  3. 3.
    Alexander LA, Hancock E, Agouris I et al (2007) The response of the nucleus pulposus of the lumbar intervertebral discs to functionally loaded positions. Spine (Phila Pa 1976) 32:1508–1512CrossRefGoogle Scholar
  4. 4.
    Madsen R, Jensen TS, Pope M et al (2008) The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis. Spine (Phila Pa 1976) 33:61–67CrossRefGoogle Scholar
  5. 5.
    Kimura S, Steinbach GC, Watenpaugh DE, Hargens AR (2001) Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine (Phila Pa 1976) 26:2596–2600CrossRefGoogle Scholar
  6. 6.
    Lee SH, Hargens AR, Fredericson M, Lang P (2003) Lumbar spine disc heights and curvature: upright posture vs. supine compression harness. Aviat Sp Env Med 74:512–516Google Scholar
  7. 7.
    Neuschwander TB, Cutrone J, Macias BR et al (2010) The effect of backpacks on the lumbar spine in children: a standing magnetic resonance imaging study. Spine (Phila Pa 1976) 35:83–88CrossRefGoogle Scholar
  8. 8.
    Dimitriadis A, Papagelopoulos P, Smith F et al (2011) Intervertebral disc changes after 1 h of running: a study on athletes. J Int Med Res 39:569–579PubMedCrossRefGoogle Scholar
  9. 9.
    Macias BR, Cao P, Watenpaugh DE, Hargens AR (2007) LBNP treadmill exercise maintains spine function and muscle strength in identical twins during 28-day simulated microgravity. J Appl Physiol 102:2274–2278PubMedCrossRefGoogle Scholar
  10. 10.
    Tarantino U, Fanucci E, Iundusi R et al (2012) Lumbar spine MRI in upright position for diagnosing acute and chronic low back pain: statistical analysis of morphological changes. J Orthop Traumatol 14:15–22PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Rodríguez-Soto AE, Jaworski R, Jensen A et al (2013) Effect of load carriage on lumbar spine kinematics. Spine (Phila Pa 1976) 38:783–791CrossRefGoogle Scholar
  12. 12.
    Shymon S, Hargens AR, Minkoff LA, Chang DG (2013) Body position and backpack loading: an upright magnetic resonance imaging study of the adult lumbar spine. Poster session presented at: Federation of American Societies for Experimental Biology Conference, BostonGoogle Scholar
  13. 13.
    Recuerda M, Périé D, Gilbert G, Beaudoin G (2012) Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging. BMC Musculoskelet Disord 13:195PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Cao P, Kimura S, Macias BR, Ueno T, Watenpaugh DE, Hargens AR (2005) Exercise within lower body negative pressure partially counteracts lumbar spine deconditioning associated with 28-day bed rest. J Appl Physiol 99:39–44PubMedCrossRefGoogle Scholar
  15. 15.
    Dabbs VM, Dabbs LG (1990) Correlation between disc height narrowing and low-back pain. Spine (Phila Pa 1976) 15:1366–1369CrossRefGoogle Scholar
  16. 16.
    Andersson GBJ, Murphy RW, Ortengren R, Nachemson AL (1979) The influence of backrest inclination and lumbar support on lumbar lordosis. Spine (Phila Pa 1976) 4:52–58CrossRefGoogle Scholar
  17. 17.
    Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191PubMedCrossRefGoogle Scholar
  18. 18.
    Schmid MR, Dueweii S, Romanowski B, Hodler J (1999) Changes in cross-sectional measurements of the spinal canal and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. Am J Roentgenol 1095–1102Google Scholar
  19. 19.
    Urban JP, McMullin JF (1988) Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine (Phila Pa 1976) 13:179–187CrossRefGoogle Scholar
  20. 20.
    Wisneski RJ, Garfin SR, Rothman RH (1999) Lumbar disc disease. In: Herkowitz HN, Garfin SR, Balderston RA (eds) Spine, vol 1. WB Saunders, Philadelphia, pp 613–679Google Scholar
  21. 21.
    White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. JB Lippincott, PhiladelphiaGoogle Scholar
  22. 22.
    Krag M, Cohen M, Haugh L, Pope M (1990) Body height change during upright and recumbent posture. Spine (Phila Pa 1976) 15:202–207CrossRefGoogle Scholar
  23. 23.
    Lotz JC, Haughton V, Boden SD et al (2012) New treatments and imaging strategies in degenerative disease of the intervertebral disks. Radiology 264:6–19PubMedCrossRefGoogle Scholar
  24. 24.
    Rijn RM, Tulder MW, Verhagen AP et al (2012) Magnetic resonance imaging for diagnosing lumbar spinal pathology in adult patients with low back pain or sciatica: a diagnostic systematic review. Eur Spine J 21:220–227PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hargens AR, Bhattacharya R, Schneider SM (2013) Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 113:2183–2192PubMedCrossRefGoogle Scholar
  26. 26.
    Kerstman EL, Scheuring RA, Barnes MG, DeKorse TB, Saile LG (2012) Space adaptation back pain: a retrospective study. Aviat Sp Env Med 83:2–7CrossRefGoogle Scholar
  27. 27.
    Sayson JV, Hargens AR (2008) Pathophysiology of low back pain during exposure to microgravity. Aviat Sp Env Med 79:364–373Google Scholar
  28. 28.
    Styf JR, Ballard RE, Fechner K, Watenpaugh DE, Kahan NJ, Hargens AR (1997) Height increase, neuromuscular function, and back pain during 6 degrees head-down tilt with traction. Aviat Sp Env Med 68:24–29Google Scholar
  29. 29.
    Tyrrell AR, Reilly T, Troup JD (1985) Circadian variation in stature and the effects of spinal loading. Spine (Phila Pa 1976) 10:161–164CrossRefGoogle Scholar
  30. 30.
    Jensen MC, Brant-Zawadzki MN, Obuchowski N et al (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephen Shymon
    • 1
  • Alan R. Hargens
    • 1
  • Lawrence A. Minkoff
    • 2
  • Douglas G. Chang
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of California, San DiegoSan DiegoUSA
  2. 2.Fonar CorporationMelvilleUSA

Personalised recommendations