European Spine Journal

, Volume 23, Issue 5, pp 985–990 | Cite as

Increased intraoperative epidural pressure in lumbar spinal stenosis patients with a positive nerve root sedimentation sign

  • Thomas Barz
  • Markus Melloh
  • Lukas P. StaubEmail author
  • Sarah J. Lord
  • Jörn Lange
  • Harry R. Merk
Original Article



The sedimentation sign (SedSign) has been shown to discriminate well between selected patients with and without lumbar spinal stenosis (LSS). The purpose of this study was to compare the pressure values associated with LSS versus non-LSS and discuss whether a positive SedSign may be related to increased epidural pressure at the level of the stenosis.


We measured the intraoperative epidural pressure in five patients without LSS and a negative SedSign, and in five patients with LSS and a positive SedSign using a Codman catheter in prone position under radioscopy.


Patients with a negative SedSign had a median epidural pressure of 9 mmHg independent of the measurement location. Breath and pulse-synchronous waves accounted for 1–3 mmHg. In patients with monosegmental LSS and a positive SedSign, the epidural pressure above and below the stenosis was similar (median 8–9 mmHg). At the level of the stenosis the median epidural pressure was 22 mmHg. A breath and pulse-synchronous wave was present cranial to the stenosis, but absent below. These findings were independent of the cross-sectional area of the spinal canal at the level of the stenosis.


Patients with LSS have an increased epidural pressure at the level of the stenosis and altered pressure wave characteristics below. We argue that the absence of sedimentation of lumbar nerve roots to the dorsal part of the dural sac in supine position may be due to tethering of affected nerve roots at the level of the stenosis.


Lumbar spinal stenosis Nerve root sedimentation Epidural pressure Spinal surgery Intraoperative 


Conflict of interest

No conflicts of interest disclosed.


  1. 1.
    Verbiest H (1954) A radicular syndrome from developmental narrowing of the lumbar vertebral canal. J Bone Joint Surg Br 36-B:230–237PubMedGoogle Scholar
  2. 2.
    Amundsen T, Weber H, Lilleas F, Nordal HJ, Abdelnoor M, Magnaes B (1995) Lumbar spinal stenosis. Clinical and radiologic features. Spine 20:1178–1186PubMedCrossRefGoogle Scholar
  3. 3.
    Barz T, Melloh M, Staub L, Roeder C, Lange J, Smiszek FG, Theis JC, Merk HR (2008) The diagnostic value of a treadmill test in predicting lumbar spinal stenosis. Eur Spine J 17:686–690PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chiodo A, Haig AJ, Yamakawa KS, Quint D, Tong H, Choksi VR (2008) Magnetic resonance imaging vs. electrodiagnostic root compromise in lumbar spinal stenosis: a masked controlled study. Am J Phys Med Rehabil 87:789–797PubMedCrossRefGoogle Scholar
  5. 5.
    Kanno H, Ozawa H, Koizumi Y, Morozumi N, Aizawa T, Kusakabe T, Ishii Y, Itoi E (2012) Dynamic change of dural sac cross-sectional area in axial loaded magnetic resonance imaging correlates with the severity of clinical symptoms in patients with lumbar spinal canal stenosis. Spine 37:207–213PubMedCrossRefGoogle Scholar
  6. 6.
    Konno S, Hayashino Y, Fukuhara S, Kikuchi S, Kaneda K, Seichi A, Chiba K, Satomi K, Nagata K, Kawai S (2007) Development of a clinical diagnosis support tool to identify patients with lumbar spinal stenosis. Eur Spine J 16:1951–1957PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sirvanci M, Bhatia M, Ganiyusufoglu KA, Duran C, Tezer M, Ozturk C, Aydogan M, Hamzaoglu A (2008) Degenerative lumbar spinal stenosis: correlation with oswestry disability index and MR imaging. Eur Spine J 17:679–685PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sigmundsson FG, Kang XP, Jonsson B, Stromqvist B (2011) Correlation between disability and MRI findings in lumbar spinal stenosis: a prospective study of 109 patients operated on by decompression. Acta Orthop 82:204–210PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Schulte TL, Schubert T, Winter C, Brandes M, Hackenberg L, Wassmann H, Liem D, Rosenbaum D, Bullmann V (2010) Step activity monitoring in lumbar stenosis patients undergoing decompressive surgery. Eur Spine J 19:1855–1864PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Barz T, Melloh M, Staub LP, Lord SJ, Lange J, Roder CP, Theis JC, Merk HR (2010) Nerve root sedimentation sign: evaluation of a new radiological sign in lumbar spinal stenosis. Spine 35:892–897PubMedCrossRefGoogle Scholar
  11. 11.
    Rydevik BL, Myers RR, Powell HC (1989) Pressure increase in the dorsal root ganglion following mechanical compression. Closed compartment syndrome in nerve roots. Spine 14:574–576PubMedCrossRefGoogle Scholar
  12. 12.
    Yabuki S, Kikuchi S, Olmarker K, Myers RR (1998) Acute effects of nucleus pulposus on blood flow and endoneurial fluid pressure in rat dorsal root ganglia. Spine 23:2517–2523PubMedCrossRefGoogle Scholar
  13. 13.
    Olmarker K, Holm S, Rosenqvist AL, Rydevik B (1991) Experimental nerve root compression. A model of acute, graded compression of the porcine cauda equina and an analysis of neural and vascular anatomy. Spine 16:61–69PubMedCrossRefGoogle Scholar
  14. 14.
    Sekiguchi M, Kikuchi S, Myers RR (2004) Experimental spinal stenosis: relationship between degree of cauda equina compression, neuropathology, and pain. Spine 29:1105–1111PubMedCrossRefGoogle Scholar
  15. 15.
    Kobayashi S, Baba H, Takeno K, Shimada S, Kubota M, Yayama T, Miyazaki T, Uchida K, Suzuki Y (2009) Blood flow analysis of compressed nerve root after intravenous injection of lipo-prostaglandin E1. J Orthop Res 27:1252–1257PubMedCrossRefGoogle Scholar
  16. 16.
    Alperin N, Hushek SG, Lee SH, Sivaramakrishnan A, Lichtor T (2005) MRI study of cerebral blood flow and CSF flow dynamics in an upright posture: the effect of posture on the intracranial compliance and pressure. Act Neurochir Suppl 95:177–181CrossRefGoogle Scholar
  17. 17.
    Chopp M, Portnoy HD (1980) Systems analysis of intracranial pressure. Comparison with volume–pressure test and CSF-pulse amplitude analysis. J Neurosurg 53:516–527PubMedCrossRefGoogle Scholar
  18. 18.
    Coffey RJ, Miesel K, Billstrom T (2010) Cerebrospinal fluid pressure measurement in the ovine intrathecal space: a preliminary study towards the diagnosis of intrathecal drug administration catheter dislodgement or occlusion. Stereotact Funct Neurosurg 88:337–344PubMedCrossRefGoogle Scholar
  19. 19.
    Fujioka S, Kaku M, Hamada J, Yokota A, Ushio Y (1989) The usefulness of lumbar epidural pressure as an index of intracranial pressure. Neurol Med Chir (Tokyo) 29:484–489CrossRefGoogle Scholar
  20. 20.
    Gaab MR (1984) Intracranial pressure recording. Principles, technics, results and possibilities. Fortschr Med 102:957–962 MMWPubMedGoogle Scholar
  21. 21.
    Lee RR, Abraham RA, Quinn CB (2001) Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine 26:1172–1178PubMedCrossRefGoogle Scholar
  22. 22.
    Packer RA, Simmons JP, Davis NM, Constable PD (2011) Evaluation of an acute focal epidural mass model to characterize the intracranial pressure-volume relationship in healthy Beagles. Am J Vet Res 72:103–108PubMedCrossRefGoogle Scholar
  23. 23.
    Shah JL (1981) Influence of cerebrospinal fluid on epidural pressure. Anaesthesia 36:627–631PubMedCrossRefGoogle Scholar
  24. 24.
    Min JH, Jang JS, Lee SH (2008) Clinical significance of redundant nerve roots of the cauda equina in lumbar spinal stenosis. Clin Neurol Neurosurg 110:14–18PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson A, Isherwood I (1994) Does degenerative disease of the lumbar spine cause arachnoiditis? A magnetic resonance study and review of the literature. Br J Radiol 67:840–847PubMedCrossRefGoogle Scholar
  26. 26.
    Laitt R, Jackson A, Isherwood I (1996) Patterns of chronic adhesive arachnoiditis following Myodil myelography: the significance of spinal canal stenosis and previous surgery. Br J Radiol 69:693–698PubMedCrossRefGoogle Scholar
  27. 27.
    Hida S, Naito M, Kubo M (2003) Intraoperative measurements of nerve root blood flow during discectomy for lumbar disc herniation. Spine 28:85–90PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi S, Uchida K, Takeno K, Baba H, Suzuki Y, Hayakawa K, Yoshizawa H (2006) Imaging of cauda equina edema in lumbar canal stenosis by using gadolinium-enhanced MR imaging: experimental constriction injury. Am J Neuroradiol 27:346–353PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas Barz
    • 1
  • Markus Melloh
    • 2
  • Lukas P. Staub
    • 3
    • 4
    Email author
  • Sarah J. Lord
    • 4
  • Jörn Lange
    • 5
  • Harry R. Merk
    • 6
  1. 1.Department of Orthopaedic SurgeryAsklepios Klinikum UckermarkSchwedtGermany
  2. 2.Centre for Medical ResearchUniversity of Western AustraliaNedlandsAustralia
  3. 3.MEM Research Center, Institute for Evaluative Research in Orthopaedic SurgeryUniversity of BernBernSwitzerland
  4. 4.NHMRC Clinical Trials CentreUniversity of SydneySydneyAustralia
  5. 5.Department of Trauma and Reconstructive Surgery, Medical FacultyUniversity of GreifswaldGreifswaldGermany
  6. 6.Department of Orthopaedic Surgery, Medical FacultyUniversity of GreifswaldGreifswaldGermany

Personalised recommendations