European Spine Journal

, Volume 22, Issue 10, pp 2271–2278 | Cite as

Parameters influencing the outcome after total disc replacement at the lumbosacral junction. Part 1: misalignment of the vertebrae adjacent to a total disc replacement affects the facet joint and facet capsule forces in a probabilistic finite element analysis

  • A. Rohlmann
  • S. Lauterborn
  • M. Dreischarf
  • H. Schmidt
  • M. Putzier
  • P. Strube
  • T. Zander
Original Article

Abstract

Purpose

After total disc replacement with a ball-and-socket joint, reduced range of motion and progression of facet joint degeneration at the index level have been described. The aim of the study was to test the hypothesis that misalignment of the vertebrae adjacent to the implant reduces range of motion and increases facet joint or capsule tensile forces.

Methods

A probabilistic finite element analysis was performed using a lumbosacral spine model with an artificial disc at level L5/S1. Misalignment of the L5 vertebra, the gap size of the facet joints, the transection of the posterior longitudinal ligament, and the spinal shape were varied. The model was loaded with pure moments.

Results

Misalignment of the L5 vertebra reduced the range of motion up to 2°. A 2-mm displacement of the L5 vertebra in the anterior direction already led to facet joint forces of approximately 240 N. Extension, lateral bending, and axial rotation caused maximum facet joint forces between 280 and 380 N, while flexion caused maximum forces of approximately 200 N. A 2-mm displacement in the posterior direction led to capsule forces of approximately 80 N. Additional moments increased the maximum facet capsule forces to values between 120 and 230 N.

Conclusions

Misalignment of the vertebrae adjacent to an artificial disc strongly increases facet joint or capsule forces. It might, therefore, be an important reason for unsatisfactory clinical results. In an associated clinical study (Part 2), these findings are validated.

Keywords

Total disc replacement Misalignment Facet joint degeneration Finite element analysis Probabilistic 

References

  1. 1.
    Delamarter RB, Fribourg DM, Kanim LE, Bae H (2003) ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine 28:S167–S175PubMedCrossRefGoogle Scholar
  2. 2.
    Guyer RD, McAfee PC, Banco RJ, Bitan FD, Cappuccino A, Geisler FH, Hochschuler SH, Holt RT, Jenis LG, Majd ME, Regan JJ, Tromanhauser SG, Wong DC, Blumenthal SL (2009) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386PubMedCrossRefGoogle Scholar
  3. 3.
    Hochschuler SH, Ohnmeiss DD, Guyer RD, Blumenthal SL (2002) Artificial disc: preliminary results of a prospective study in the United States. Eur Spine J 11(Suppl 2):S106–S110PubMedGoogle Scholar
  4. 4.
    Sasso RC, Foulk DM, Hahn M (2008) Prospective, randomized trial of metal-on-metal artificial lumbar disc replacement: initial results for treatment of discogenic pain. Spine 33:123–131PubMedCrossRefGoogle Scholar
  5. 5.
    Park CK, Ryu KS, Jee WH (2008) Degenerative changes of discs and facet joints in lumbar total disc replacement using ProDisc II: minimum two-year follow-up. Spine 33:1755–1761PubMedCrossRefGoogle Scholar
  6. 6.
    Shim CS, Lee SH, Shin HD, Kang HS, Choi WC, Jung B, Choi G, Ahn Y, Lee S, Lee HY (2007) CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine 32:1012–1018PubMedCrossRefGoogle Scholar
  7. 7.
    Siepe CJ, Zelenkov P, Sauri-Barraza JC, Szeimies U, Grubinger T, Tepass A, Stabler A, Mayer MH (2010) The fate of facet joint and adjacent level disc degeneration following total lumbar disc replacement: a prospective clinical, X-ray, and magnetic resonance imaging investigation. Spine 35:1991–2003PubMedCrossRefGoogle Scholar
  8. 8.
    Rohlmann A, Burra NK, Zander T, Bergmann G (2007) Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J 16:1223–1231PubMedCrossRefGoogle Scholar
  9. 9.
    Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech 24:135–142CrossRefGoogle Scholar
  10. 10.
    Zander T, Rohlmann A, Calisse J, Bergmann G (2001) Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech 16:S73–S80CrossRefGoogle Scholar
  11. 11.
    Panjabi MM, Oxland T, Takata K, Goel V, Duranceau J, Krag M (1993) Articular facets of the human spine quantitative three-dimensional anatomy. Spine 18:1298–1310PubMedCrossRefGoogle Scholar
  12. 12.
    Sharma M, Langrana NA, Rodriguez J (1995) Role of ligaments and facets in lumbar spinal stability. Spine 20:887–900PubMedCrossRefGoogle Scholar
  13. 13.
    Eberlein R, Holzapfel GA, Schulze-Bauer CAJ (2000) An anisotropic model for annulus tissue and enhanced finite element analysis of intact lumbar disc bodies. Comp Meth Biomech Biomed Eng 4:209–229Google Scholar
  14. 14.
    Nolte LP, Panjabi MM, Oxland TR (1990) Biomechanical properties of lumbar spinal ligaments. In: Heimke G, Soltesz U, Lee AJC (eds) Clinical Implant Materials. Advances in Biomaterials, Elsevier, pp 663–668Google Scholar
  15. 15.
    Rohlmann A, Zander T, Schmidt H, Wilke H-J, Bergmann G (2006) Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 39:2484–2490PubMedCrossRefGoogle Scholar
  16. 16.
    Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927PubMedCrossRefGoogle Scholar
  17. 17.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353PubMedCrossRefGoogle Scholar
  18. 18.
    Rohlmann A, Mann A, Zander T, Bergmann G (2009) Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. Eur Spine J 18:89–97PubMedCrossRefGoogle Scholar
  19. 19.
    Rohlmann A, Zander T, Bock B, Bergmann G (2008) Effect of position and height of a mobile core type artificial disc on the biomechanical behaviour of the lumbar spine. Proc Inst Mech Eng [H] 222:229–239Google Scholar
  20. 20.
    Zander T, Rohlmann A, Bergmann G (2006) Comparison of conventional and kinematic modeling of an artificial disc. In: 7th international symposium on computer methods in biomechanics and biomedical engineering. Antibes Juan Les Pins, FranceGoogle Scholar
  21. 21.
    Gurdak JJ, McCray JE, Thyne G, Qi SL (2007) Latin hypercube approach to estimate uncertainty in ground water vulnerability. Ground Water 45:348–361PubMedCrossRefGoogle Scholar
  22. 22.
    Rohlmann A, Zander T, Rao M, Bergmann G (2009) Realistic loading conditions for upper body bending. J Biomech 42:884–890PubMedCrossRefGoogle Scholar
  23. 23.
    Dreischarf M, Rohlmann A, Bergmann G, Zander T (2011) Optimised loads for the simulation of axial rotation in the lumbar spine. J Biomech 44:2323–2327PubMedCrossRefGoogle Scholar
  24. 24.
    Dreischarf M, Rohlmann A, Bergmann G, Zander T (2012) Recommended loads for the simulation of lateral bending in the lumbar spine: an optimisation finite element study. Med Eng Phys 34:777–780PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson DC, Niosi CA, Zhu QA, Oxland TR, Wilson DR (2006) Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J Biomech 39:348–353PubMedCrossRefGoogle Scholar
  26. 26.
    Dreischarf M, Zander T, Bergmann G, Rohlmann A (2010) A non-optimized follower load path may cause considerable intervertebral rotations. J Biomech 43:2625–2628PubMedCrossRefGoogle Scholar
  27. 27.
    Rohlmann A, Zander T, Bergmann G (2006) Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J 15:1255–1264PubMedCrossRefGoogle Scholar
  28. 28.
    Ueno K, Liu YK (1987) A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J Biomech Eng 109:200–209PubMedCrossRefGoogle Scholar
  29. 29.
    Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26:E122–E129PubMedCrossRefGoogle Scholar
  30. 30.
    Strube P, Hoff E, Schmidt H, Dreischarf M, Rohlmann A, Putzier M (submitted) Parameters influencing the outcome after total disc replacement at the lumbosacral juction. Part 2: distraction and retrolisthesis lead to clinical failure after a mean follow-up of 5 years. Eur Spine J (under review)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Rohlmann
    • 1
  • S. Lauterborn
    • 1
  • M. Dreischarf
    • 1
  • H. Schmidt
    • 1
  • M. Putzier
    • 2
  • P. Strube
    • 2
  • T. Zander
    • 1
  1. 1.Julius Wolff InstituteCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Center for Musculoskeletal Surgery, Clinic for OrthopaedicsCharité-University Medicine BerlinBerlinGermany

Personalised recommendations