Skip to main content
Log in

Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Vertebral augmentation with PMMA is a widely applied treatment of vertebral osteoporotic compression fractures. Subsequent fractures are a common complication, possibly due to the relatively high stiffness of PMMA in comparison with bone. Silicone as an augmentation material has biomechanical properties closer to those of bone and might, therefore, be an alternative. The study aimed to investigate the biomechanical differences, especially stiffness, of vertebral bodies with two augmentation materials and two filling grades.

Methods

Forty intact human osteoporotic vertebrae (T10–L5) were studied. Wedge fractures were produced in a standardized manner. For treatment, PMMA and silicone at two filling grades (16 and 35 % vertebral body fill) were assigned to four groups. Each specimen received 5,000 load cycles with a high load range of 20–65 % of fracture force, and stiffness was measured. Additional low-load stiffness measurements (100–500 N) were performed for intact and augmented vertebrae and after cyclic loading.

Results

Low-load stiffness testing after cyclic loading normalized to intact vertebrae showed increased stiffness with 35 and 16 % PMMA (115 and 110 %) and reduced stiffness with 35 and 16 % silicone (87 and 82 %). After cyclic loading (high load range), the stiffness normalized to the untreated vertebrae was 361 and 304 % with 35 and 16 % PMMA, and 243 and 222 % with 35 and 16 % silicone augmentation. For both high and low load ranges, the augmentation material had a significant effect on the stiffness of the augmented vertebra, while the filling grade did not significantly affect stiffness.

Conclusions

This study for the first time directly compared the stiffness of silicone-augmented and PMMA-augmented vertebral bodies. Silicone may be a viable option in the treatment of osteoporotic fractures and it has the biomechanical potential to reduce the risk of secondary fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blasco J, Martinez-Ferrer A, Macho J, San Roman L, Pomes J, Carrasco J, Monegal A, Guanabens N, Peris P (2012) Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: a 12-month randomized follow-up, controlled trial. J Bone Miner Res 27(5):1159–1166

    Article  PubMed  Google Scholar 

  2. Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, Graves S, Staples MP, Murphy B (2009) A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 361(6):557–568

    Article  PubMed  CAS  Google Scholar 

  3. Farrokhi MR, Alibai E, Maghami Z (2011) Randomized controlled trial of percutaneous vertebroplasty versus optimal medical management for the relief of pain and disability in acute osteoporotic vertebral compression fractures. J Neurosurg Spine 14(5):561–569

    PubMed  Google Scholar 

  4. Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH, Edwards R, Gray LA, Stout L, Owen S, Hollingworth W, Ghdoke B, Annesley-Williams DJ, Ralston SH, Jarvik JG (2009) A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 361(6):569–579

    Article  PubMed  CAS  Google Scholar 

  5. Longo UG, Loppini M, Denaro L, Brandi ML, Maffulli N, Denaro V (2010) The effectiveness and safety of vertebroplasty for osteoporotic vertebral compression fractures. A double blind, prospective, randomized, controlled study. Clin Cases Miner Bone Metab 7(2):109–113

    PubMed  Google Scholar 

  6. Rousing R, Andersen MO, Jespersen SM, Thomsen K, Lauritsen J (2009) Percutaneous vertebroplasty compared to conservative treatment in patients with painful acute or subacute osteoporotic vertebral fractures: three-months follow-up in a clinical randomized study. Spine (Phila Pa 1976) 34(13):1349–1354

    Article  Google Scholar 

  7. Rousing R, Hansen KL, Andersen MO, Jespersen SM, Thomsen K, Lauritsen JM (2010) Twelve-months follow-up in forty-nine patients with acute/semiacute osteoporotic vertebral fractures treated conservatively or with percutaneous vertebroplasty: a clinical randomized study. Spine (Phila Pa 1976) 35(5):478–482

    Article  Google Scholar 

  8. Voormolen MH, Mali WP, Lohle PN, Fransen H, Lampmann LE, van der Graaf Y, Juttmann JR, Jansssens X, Verhaar HJ (2007) Percutaneous vertebroplasty compared with optimal pain medication treatment: short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. AJNR Am J Neuroradiol 28(3):555–560

    PubMed  CAS  Google Scholar 

  9. Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, Venmans A, van Rooij WJ, Schoemaker MC, Juttmann JR, Lo TH, Verhaar HJ, van der Graaf Y, van Everdingen KJ, Muller AF, Elgersma OE, Halkema DR, Fransen H, Janssens X, Buskens E, Mali WP (2010) Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet 376(9746):1085–1092

    Article  PubMed  Google Scholar 

  10. Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford) 39(12):1410–1414

    Article  CAS  Google Scholar 

  11. Hierholzer J, Fuchs H, Westphalen K, Baumann C, Slotosch C, Schulz R (2008) Incidence of symptomatic vertebral fractures in patients after percutaneous vertebroplasty. Cardiovasc Intervent Radiol 31(6):1178–1183

    Article  PubMed  Google Scholar 

  12. Kim MH, Lee AS, Min SH, Yoon SH (2011) Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Asian Spine J 5(3):180–187

    Article  PubMed  Google Scholar 

  13. Kobayashi N, Numaguchi Y, Fuwa S, Uemura A, Matsusako M, Okajima Y, Ishiyama M, Takahashi O (2009) Prophylactic vertebroplasty: cement injection into non-fractured vertebral bodies during percutaneous vertebroplasty. Acad Radiol 16(2):136–143

    Article  PubMed  Google Scholar 

  14. Komemushi A, Tanigawa N, Kariya S, Kojima H, Shomura Y, Komemushi S, Sawada S (2006) Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture. Cardiovasc Intervent Radiol 29(4):580–585

    Article  PubMed  Google Scholar 

  15. Li YA, Lin CL, Chang MC, Liu CL, Chen TH, Lai SC (2012) Subsequent vertebral fracture after vertebroplasty: incidence and analysis of risk factors. Spine (Phila Pa 1976) 37(3):179–183

    Article  CAS  Google Scholar 

  16. Lin H, Bao LH, Zhu XF, Qian C, Chen X, Han ZB (2010) Analysis of recurrent fracture of a new vertebral body after percutaneous vertebroplasty in patients with osteoporosis. Orthop Surg 2(2):119–123

    Article  PubMed  Google Scholar 

  17. Lin WC, Cheng TT, Lee YC, Wang TN, Cheng YF, Lui CC, Yu CY (2008) New vertebral osteoporotic compression fractures after percutaneous vertebroplasty: retrospective analysis of risk factors. J Vasc Interv Radiol 19(2 Pt 1):225–231

    Article  PubMed  Google Scholar 

  18. Lin WC, Lee YC, Lee CH, Kuo YL, Cheng YF, Lui CC, Cheng TT (2008) Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J 17(4):592–599

    Article  PubMed  Google Scholar 

  19. Lu K, Liang CL, Hsieh CH, Tsai YD, Chen HJ, Liliang PC (2012) Risk factors of subsequent vertebral compression fractures after vertebroplasty. Pain Med 13(3):376–382

    Article  PubMed  Google Scholar 

  20. Movrin I, Vengust R, Komadina R (2010) Adjacent vertebral fractures after percutaneous vertebral augmentation of osteoporotic vertebral compression fracture: a comparison of balloon kyphoplasty and vertebroplasty. Arch Orthop Trauma Surg 130(9):1157–1166

    Article  PubMed  CAS  Google Scholar 

  21. Rho YJ, Choe WJ, Chun YI (2012) Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty. Eur Spine J 21(5):905–911

    Article  PubMed  Google Scholar 

  22. Trout AT, Kallmes DF, Kaufmann TJ (2006) New fractures after vertebroplasty: adjacent fractures occur significantly sooner. AJNR Am J Neuroradiol 27(1):217–223

    PubMed  CAS  Google Scholar 

  23. Tseng YY, Yang TC, Tu PH, Lo YL, Yang ST (2009) Repeated and multiple new vertebral compression fractures after percutaneous transpedicular vertebroplasty. Spine (Phila Pa 1976) 34(18):1917–1922

    Article  Google Scholar 

  24. Voormolen MH, Lohle PN, Juttmann JR, van der Graaf Y, Fransen H, Lampmann LE (2006) The risk of new osteoporotic vertebral compression fractures in the year after percutaneous vertebroplasty. J Vasc Interv Radiol 17(1):71–76

    Article  PubMed  Google Scholar 

  25. Yen CH, Teng MM, Yuan WH, Sun YC, Chang CY (2012) Preventive vertebroplasty for adjacent vertebral bodies: a good solution to reduce adjacent vertebral fracture after percutaneous vertebroplasty. AJNR Am J Neuroradiol 33(5):826–832

    Article  PubMed  CAS  Google Scholar 

  26. Klazen CA, Venmans A, de Vries J, van Rooij WJ, Jansen FH, Blonk MC, Lohle PN, Juttmann JR, Buskens E, van Everdingen KJ, Muller A, Fransen H, Elgersma OE, Mali WP, Verhaar HJ (2010) Percutaneous vertebroplasty is not a risk factor for new osteoporotic compression fractures: results from VERTOS II. AJNR Am J Neuroradiol 31(8):1447–1450

    Article  PubMed  CAS  Google Scholar 

  27. Mudano AS, Bian J, Cope JU, Curtis JR, Gross TP, Allison JJ, Kim Y, Briggs D, Melton ME, Xi J, Saag KG (2009) Vertebroplasty and kyphoplasty are associated with an increased risk of secondary vertebral compression fractures: a population-based cohort study. Osteoporos Int 20(5):819–826

    Article  PubMed  CAS  Google Scholar 

  28. Wang HK, Lu K, Liang CL, Weng HC, Wang KW, Tsai YD, Hsieh CH, Liliang PC (2010) Comparing clinical outcomes following percutaneous vertebroplasty with conservative therapy for acute osteoporotic vertebral compression fractures. Pain Med 11(11):1659–1665

    Article  PubMed  Google Scholar 

  29. Wardlaw D, Cummings SR, Van Meirhaeghe J, Bastian L, Tillman JB, Ranstam J, Eastell R, Shabe P, Talmadge K, Boonen S (2009) Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet 373(9668):1016–1024

    Article  PubMed  Google Scholar 

  30. Chosa K, Naito A, Awai K (2011) Newly developed compression fractures after percutaneous vertebroplasty: comparison with conservative treatment. Jpn J Radiol 29(5):335–341

    Article  PubMed  Google Scholar 

  31. Baroud G, Heini P, Nemes J, Bohner M, Ferguson S, Steffen T (2003) Biomechanical explanation of adjacent fractures following vertebroplasty. Radiology 229(2):606–607 Author reply 607–608

    Article  PubMed  Google Scholar 

  32. Boger A, Heini P, Windolf M, Schneider E (2007) Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Eur Spine J 16(12):2118–2125

    Article  PubMed  Google Scholar 

  33. Chiang CK, Wang YH, Yang CY, Yang BD, Wang JL (2009) Prophylactic vertebroplasty may reduce the risk of adjacent intact vertebra from fatigue injury: an ex vivo biomechanical study. Spine (Phila Pa 1976) 34(4):356–364

    Article  Google Scholar 

  34. Wilcox RK (2006) The biomechanical effect of vertebroplasty on the adjacent vertebral body: a finite element study. Proc Inst Mech Eng H 220(4):565–572

    Article  PubMed  CAS  Google Scholar 

  35. Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, Pooler BD, Binkley N (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26(9):2194–2203

    Article  PubMed  Google Scholar 

  36. Ruger M, Schmoelz W (2009) Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro. Spine (Phila Pa 1976) 34(24):2619–2625

    Article  Google Scholar 

  37. Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine (Phila Pa 1976) 26(14):1547–1554

    Article  CAS  Google Scholar 

  38. Molloy S, Mathis JM, Belkoff SM (2003) The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine (Phila Pa 1976) 28(14):1549–1554

    Google Scholar 

  39. Galibert P, Deramond H, Rosat P, Le Gars D (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 33(2):166–168

    PubMed  CAS  Google Scholar 

  40. Lapras C, Mottolese C, Deruty R, Lapras C Jr, Remond J, Duquesnel J (1989) Percutaneous injection of methyl-metacrylate in osteoporosis and severe vertebral osteolysis (Galibert’s technic). Ann Chir 43(5):371–376

    PubMed  CAS  Google Scholar 

  41. Lieberman IH, Dudeney S, Reinhardt MK, Bell G (2001) Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine (Phila Pa 1976) 26(14):1631–1638

    Article  CAS  Google Scholar 

  42. Laredo JD, Hamze B (2004) Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol 33(9):493–505

    Article  PubMed  CAS  Google Scholar 

  43. Han IH, Chin DK, Kuh SU, Kim KS, Jin BH, Yoon YS, Cho YE (2009) Magnetic resonance imaging findings of subsequent fractures after vertebroplasty. Neurosurgery 64(4):740–744 Discussion 744–745

    Article  PubMed  Google Scholar 

  44. Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84(5):748–752

    Article  PubMed  CAS  Google Scholar 

  45. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (Phila Pa 1976) 28(10):991–996

    Google Scholar 

  46. Aquarius R, Homminga J, Verdonschot N, Tanck E (2011) The fracture risk of adjacent vertebrae is increased by the changed loading direction after a wedge fracture. Spine (Phila Pa 1976) 36(6):E408–E412

    Article  Google Scholar 

  47. Ahn Y, Lee JH, Lee HY, Lee SH, Keem SH (2008) Predictive factors for subsequent vertebral fracture after percutaneous vertebroplasty. J Neurosurg Spine 9(2):129–136

    Article  PubMed  Google Scholar 

  48. Chen WJ, Kao YH, Yang SC, Yu SW, Tu YK, Chung KC (2010) Impact of cement leakage into disks on the development of adjacent vertebral compression fractures. J Spinal Disord Tech 23(1):35–39

    Article  PubMed  Google Scholar 

  49. Sun YC, Teng MM, Yuan WS, Luo CB, Chang FC, Lirng JF, Guo WY, Chang CY (2011) Risk of post-vertebroplasty fracture in adjacent vertebral bodies appears correlated with the morphologic extent of bone cement. J Chin Med Assoc 74(8):357–362

    Article  PubMed  Google Scholar 

  50. Lee KA, Hong SJ, Lee S, Cha IH, Kim BH, Kang EY (2011) Analysis of adjacent fracture after percutaneous vertebroplasty: does intradiscal cement leakage really increase the risk of adjacent vertebral fracture? Skeletal Radiol 40(12):1537–1542

    Article  PubMed  Google Scholar 

  51. Rohlmann A, Boustani HN, Bergmann G, Zander T (2010) A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty. Eur Spine J 19(9):1585–1595

    Article  PubMed  Google Scholar 

  52. Chen LH, Hsieh MK, Liao JC, Lai PL, Niu CC, Fu TS, Tsai TT, Chen WJ (2011) Repeated percutaneous vertebroplasty for refracture of cemented vertebrae. Arch Orthop Trauma Surg 131(7):927–933

    Article  PubMed  Google Scholar 

  53. Heo DH, Chin DK, Yoon YS, Kuh SU (2009) Recollapse of previous vertebral compression fracture after percutaneous vertebroplasty. Osteoporos Int 20(3):473–480

    Article  PubMed  CAS  Google Scholar 

  54. Wang JL, Chiang CK, Kuo YW, Chou WK, Yang BD (2012) Mechanism of fractures of adjacent and augmented vertebrae following simulated vertebroplasty. J Biomech 45(8):1372–1378

    Article  PubMed  Google Scholar 

  55. Colas A, Curtis J (2004) Silicone biomaterials: history and chemistry. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 80–86

    Google Scholar 

  56. Colas A, Curtis J (2004) Medical applications of silicones. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, pp 697–707

    Google Scholar 

  57. Heide C (1999) Silicone rubber for medical device applications. Medical device and diagnostic industry magazine, Nov, pp 38–44

  58. Nouda S, Tomita S, Kin A, Kawahara K, Kinoshita M (2009) Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine. Spine (Phila Pa 1976) 34(24):2613–2618

    Article  Google Scholar 

  59. Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P (2009) Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine (Phila Pa 1976) 34(26):2865–2873

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Schmoelz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulte, T.L., Keiler, A., Riechelmann, F. et al. Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades. Eur Spine J 22, 2695–2701 (2013). https://doi.org/10.1007/s00586-013-2908-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2908-0

Keywords

Navigation