European Spine Journal

, Volume 22, Issue 4, pp 741–746 | Cite as

Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty

  • Matthew F. Gornet
  • J. K. Burkus
  • M. L. Harper
  • F. W. Chan
  • A. K. Skipor
  • J. J. Jacobs
Original Article

Abstract

Purpose

Metal-on-metal total disc replacement is a recent alternative treatment for degenerative disc disease. Wear and corrosion of these implants can lead to local and systemic transport of metal debris. This prospective longitudinal study examined the serum chromium and cobalt levels in 24 patients with cobalt–chromium alloy metal-on-metal lumbar disc replacements.

Methods

Serum was assayed for chromium (Cr) and cobalt (Co) using high-resolution inductively-coupled plasma-mass spectrometry. Detection limits were 0.015 ng/mL for Cr and 0.04 ng/mL for Co.

Results

Median serum Co levels at pre-op, 3, 6, 12, 24, and 36-months post-op were 0.10, 1.03, 0.96, 0.98, 0.67, and 0.52 ng/mL, respectively. Median serum Cr levels were 0.06, 0.49, 0.65, 0.43, 0.52, and 0.50 ng/mL, respectively.

Conclusion

In general, these results indicated that serum Co and Cr levels are elevated at all postoperative time points and are of the same order of magnitude as those observed in well-functioning metal-on-metal surface replacements of the hip and in metal-on-metal total hip replacements at similar postoperative time points.

Keywords

Lumbar degenerative disc disease Disc arthroplasty Metal ions Chromium Cobalt Metal-on-metal 

References

  1. 1.
    Gamradt SC, Wang JC (2005) Lumbar disc arthroplasty. Spine J 51:95–103CrossRefGoogle Scholar
  2. 2.
    Bao QB, McCullen GM, Higham PA, Dumbleton JH, Yuan HA (1996) The artificial disc: theory, design and materials. Biomaterials 1712:1157–1167CrossRefGoogle Scholar
  3. 3.
    Guyer RD, McAfee PC, Hochschuler SH, Blumenthal SL, Fedder IL, Ohnmeiss DD, Cunningham BW (2004) Prospective randomized study of the charite artificial disc: data from two investigational centers. Spine J 46(Suppl):252S–259SCrossRefGoogle Scholar
  4. 4.
    Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GO III, Haider TT, Cammisa F, Zuchermann J, Balderston R, Kitchel S, Foley K, Watkins R, Bradford D, Yue J, Yuan H, Herkowitz H, Geiger D, Bendo J, Peppers T, Sachs B, Girardi F, Kropf M, Goldstein J (2007) Results of the prospective, randomized, multicenter food and drug administration investigational device exemption study of the prodisc-l total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine (Phila Pa 1976) 3211:1155–1162CrossRefGoogle Scholar
  5. 5.
    Mathews HH, Lehuec J, Friesem T, Zdeblick T, Eisermann L (2004) Design rationale and biomechanics of maverick total disc arthroplasty with early clinical results. Spine J 46(Suppl):268S–275SCrossRefGoogle Scholar
  6. 6.
    Harris WH (2001) Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res 393:66–70PubMedCrossRefGoogle Scholar
  7. 7.
    van Ooij A, Kurtz SM, Stessels F, Noten H, van Rhijn L (2007) Polyethylene wear debris and long-term clinical failure of the charite disc prosthesis: a study of 4 patients. Spine (Phila Pa 1976) 322:223–229CrossRefGoogle Scholar
  8. 8.
    Amstutz HC, Le Duff MJ, Campbell PA, Gruen TA, Wisk LE (2010) Clinical and radiographic results of metal-on-metal hip resurfacing with a minimum ten-year follow-up. J Bone Joint Surg Am 9216:2663–2671CrossRefGoogle Scholar
  9. 9.
    Treacy RBC, McBryde CW, Shears E, Pynsent PB (2011) Birmingham hip resurfacing: a minimum follow-up of ten years. J Bone Joint Surg Br 931:27–33Google Scholar
  10. 10.
    Sieber HP, Rieker CB, Kottig P (1999) Analysis of 118 second-generation metal-on-metal retrieved hip implants. J Bone Joint Surg Br 811:46–50CrossRefGoogle Scholar
  11. 11.
    Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CLM, Ostlere S, Athanasou N, Gill HS, Murray DW (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 907:847–851Google Scholar
  12. 12.
    Korovessis P, Petsinis G, Repanti M, Repantis T (2006) Metallosis after contemporary metal-on-metal total hip arthroplasty: five to nine-year follow-up. J Bone Joint Surg Am 886:1183–1191CrossRefGoogle Scholar
  13. 13.
    Skipor AK, Campbell PA, Patterson LM, Anstutz HC, Schmalzried TP, Jacobs JJ (2002) Serum and urine metal levels in patients with metal-on-metal surface arthroplasty. J Mater Sci Mater Med 1312:1227–1234CrossRefGoogle Scholar
  14. 14.
    MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D, Leung F (2003) Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 406:282–296PubMedCrossRefGoogle Scholar
  15. 15.
    Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP (2010) The john charnley award: metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 4682:318–325CrossRefGoogle Scholar
  16. 16.
    Langton DJ, Sprowson AP, Joyce TJ, Reed M, Carluke I, Partington P, Nargol AVF (2009) Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and birmingham hip resurfacing arthroplasties. J Bone Joint Surg Br 9110:1287–1295Google Scholar
  17. 17.
    MacDonald SJ, Brodner W, Jacobs JJ (2004) A consensus paper on metal ions in metal-on-metal hip arthroplasties. J Arthroplasty 198(Suppl 3):12–16CrossRefGoogle Scholar
  18. 18.
    Kim Y, Kassab F, Berven SH, Zurakowski D, Hresko MT, Emans JB, Kasser JR (2005) Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis. Spine (Phila Pa 1976) 308:923–926CrossRefGoogle Scholar
  19. 19.
    del Rio J, Beguiristain J, Duart J (2007) Metal levels in corrosion of spinal implants. Eur Spine J 167:1055–1061CrossRefGoogle Scholar
  20. 20.
    McPhee IB, Swanson CE (2007) Metal ion levels in patients with stainless steel spinal instrumentation. Spine (Phila Pa 1976) 3218:1963–1968CrossRefGoogle Scholar
  21. 21.
    Rackham MD, Cundy TP, Antoniou G, Freeman BJC, Sutherland LM, Cundy PJ (2010) Predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 359:975–982CrossRefGoogle Scholar
  22. 22.
    Cundy TP, Delaney CL, Rackham MD, Antoniou G, Oakley AP, Freeman BJC, Sutherland LM, Cundy PJ (2010) Chromium ion release from stainless steel pediatric scoliosis instrumentation. Spine (Phila Pa 1976) 359:967–974CrossRefGoogle Scholar
  23. 23.
    Kasai Y, Iida R, Uchida A (2003) Metal concentrations in the serum and hair of patients with titanium alloy spinal implants. Spine (Phila Pa 1976) 2812:1320–1326Google Scholar
  24. 24.
    Richardson TD, Pineda SJ, Strenge KB, Van Fleet TA, MacGregor M, Milbrandt JC, Espinosa JA, Freitag P (2008) Serum titanium levels after instrumented spinal arthrodesis. Spine (Phila Pa 1976) 337:792–796CrossRefGoogle Scholar
  25. 25.
    Zeh A, Planert M, Siegert G, Lattke P, Held A, Hein W (2007) Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal maverick-type artificial lumbar disc (medtronic sofamor danek). Spine (Phila Pa 1976) 323:348–352CrossRefGoogle Scholar
  26. 26.
    Zeh A, Becker C, Planert M, Lattke P, Wohlrab D (2009) Time-dependent release of cobalt and chromium ions into the serum following implantation of the metal-on-metal maverick type artificial lumbar disc (medtronic sofamor danek). Arch Orthop Trauma Surg 1296:741–746CrossRefGoogle Scholar
  27. 27.
    Stieber JR, Errico TJ, Bauer T, Whitaker C, Miz G, Sasso R (2010) Blood metal ion levels following implantation of the all-metal flexicore lumbar intervertebral disc replacement, 24–36 month follow-up. In: 10th Annual Global Symposium on Motion Preservation Technology,Spine Arthroplasty Society, New Orleans, LA, April 2010Google Scholar
  28. 28.
    ASTM 1537-08: Standard specification for wrought cobalt-28 chromium-6 molybdenum alloys for surgical implantsGoogle Scholar
  29. 29.
    Gornet MF, Burkus JK, Dryer RF, Peloza JH (2011) Lumbar disc arthroplasty with MAVERICK disc versus stand-alone interbody fusion: a prospective, randomized, controlled, multicenter investigational device exemption trial. Spine (Phila Pa 1976) 3625:E1600–E1611CrossRefGoogle Scholar
  30. 30.
    Obot IB, Obi-Egbedi NO, Umoren SA (2009) Adsorption characteristics and corrosion inhibitive properties of Clotrimazole for aluminium corrosion in hydrochloric acid. Int J Electrochem Sci 4:863–877Google Scholar
  31. 31.
    Eddy NO, Ebenso EE (2010) Adsorption and quantum chemical studies on cloxacillin and halides for the corrosion of mild steel in acidic medium Int. J. Electrochem. Sci. 5:731–750Google Scholar
  32. 32.
    Jacobs JJ, Skipor AK, Black J, Urban R, Galante JO (1991) Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am 7310:1475–1486Google Scholar
  33. 33.
    Bisseling P, Zeilstra DJ, Hol AM, van Susante JLC (2011) Metal ion levels in patients with a lumbar metal-on-metal total disc replacement: should we be concerned? J Bone Joint Surg Br 937:949–954Google Scholar
  34. 34.
    Clark M, Prentice J, Hoggard N, Stockley I, Jacobs JJ, Wilkinson JM (2012) Effect of laboratory analysis on metal levels after momhr and potential impact on patient management and interpretation of research datasets. In: Transactions of the 58th Annual Meeting of the Orthopaedic Research Society, Poster #1928Google Scholar
  35. 35.
    Villarraga ML, Cripton PA, Teti SD, Steffey DL, Krisnamuthy S, Albert T, Hilibrand A, Vaccaro A (2006) Wear and corrosion in retrieved thoracolumbar posterior internal fixation. Spine (Phila Pa 1976) 31:2454–2462CrossRefGoogle Scholar
  36. 36.
    Harper ML, Dooris A, Pare PE (2009) The fundamentals of biotribology and its application to spine arthroplasty. SAS J 3:125–132CrossRefGoogle Scholar
  37. 37.
    Witzleb W, Ziegler J, Krummenauer F, Neumeister V, Guenther K (2006) Exposure to chromium, cobalt and molybdenum from metal-on-metal total hip replacement and hip resurfacing arthroplasty. Acta Orthop 775:697–705CrossRefGoogle Scholar
  38. 38.
    Back DL, Young DA, Shimmin AJ (2005) How do serum cobalt and chromium levels change after metal-on-metal hip resurfacing? Clin Orthop Relat Res 438:177–181PubMedCrossRefGoogle Scholar
  39. 39.
    Skipor AK, Campbell PA, Gitelis S, Berger RA, Amstutz HC & Jacobs JJ (2004) Three year prospective study of serum and urine metal levels in patients with metal-on-metal total hip and surface arthroplasty. In: Transactions of the 50th Annual Meeting of the Orthopaedic Research Society, Paper 124Google Scholar
  40. 40.
    Brodner W, Grubl A, Jankovsky R, Meisinger V, Lehr S, Gottsauner-Wolf F (2004) Cup inclination and serum concentration of cobalt and chromium after metal-on-metal total hip arthroplasty. J Arthroplasty 198(Suppl 3):66–70CrossRefGoogle Scholar
  41. 41.
    Kwon YM, Thomas P, Summer B, Pandit H, Taylor A, Beard D, Murray DW, Gill HS (2010) Lymphocyte proliferation responses in patients with pseudotumors following metal-on-metal hip resurfacing arthroplasty. J Orthop Res 284:444–450Google Scholar
  42. 42.
    Guyer RD, Shellock J, MacLennan B, Hanscom D, Knight RQ, McCombe P, Jacobs JJ, Urban RM, Bradford D, Ohnmeiss DD (2011) Early failure of metal-on-metal artificial disc prostheses associated with lymphocytic reaction: diagnosis and treatment experience in four cases. Spine (Phila Pa 1976) 367:E492–E497CrossRefGoogle Scholar
  43. 43.
    Berry MR, Peterson BG, Alander DH (2010) A granulomatous mass surrounding a maverick total disc replacement causing iliac vein occlusion and spinal stenosis: a case report. J Bone Joint Surg Am 925:1242–1245CrossRefGoogle Scholar
  44. 44.
    Francois J, Coessens R, Lauweryns P (2007) Early removal of a maverick disc prosthesis: surgical findings and morphological changes. Acta Orthop Belg 731:122–127Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthew F. Gornet
    • 1
  • J. K. Burkus
    • 2
  • M. L. Harper
    • 3
  • F. W. Chan
    • 4
  • A. K. Skipor
    • 5
  • J. J. Jacobs
    • 5
  1. 1.Spine Research CenterThe Orthopedic Center of St. LouisSt. LouisUSA
  2. 2.Hughston ClinicColumbusUSA
  3. 3.Medtronic, AF SolutionsMinneapolisUSA
  4. 4.Covidien, Respiratory and Monitoring SolutionsBoulderUSA
  5. 5.Rush University Medical CenterChicagoUSA

Personalised recommendations