Skip to main content
Log in

Anular delamination strength of human lumbar intervertebral disc

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Progression of intervertebral disc (IVD) herniation does not occur exclusively in a linear manner through the anulus fibrosus (AF), but can migrate circumferentially due to localized AF delamination. Consequently, resistance to delamination is an important factor in determining risk of herniation progression. The inter-lamellar matrix located between the AF layers is responsible for resisting this delamination; however, its mechanical properties are largely unknown. This study aimed to determine the mechanical properties of the inter-lamellar matrix in human AF samples via a peel test.

Materials and methods

Seventeen human IVDs (degeneration grades of 2–3) were obtained from six lumbar spines. From these 17 discs, 53 tissue samples were obtained from the superficial and deep regions of the anterior and posterior AF. Samples were dissected into a ‘T’ configuration to facilitate a T-peel test (or 180-degree peel test) by initiating delamination between the two middle AF layers.

Results

Peel strength was found to be 33 % higher in tissues obtained from the superficial AF region as compared with the deep region (p = 0.047).

Conclusion

This finding may indicate a higher resistance to delamination in the superficial AF, and as a result, delamination and herniation progression may occur more readily in the deeper layers of the AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA (2002) Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 201:159–171

    Article  PubMed  Google Scholar 

  2. Errington RJ, Puustjarvi K, White IRF, Roberts S, Urban JP (1998) Characterisation of cytoplasm-filled processes in cells of the intervertebral disc. J Anat 192:369–378

    Article  PubMed  Google Scholar 

  3. Eyre DR, Muir H (1976) Type-1 and type-2 collagens in intervertebral-disk: interchanging radial distributions in annulus fibrosus. Biochem J 157:267–270

    PubMed  CAS  Google Scholar 

  4. Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121

    Article  PubMed  CAS  Google Scholar 

  5. Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1996) Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21:452–461

    Article  PubMed  CAS  Google Scholar 

  6. Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3:125–140

    Article  PubMed  CAS  Google Scholar 

  7. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC (1994) Regional variation in tensile properties and biochemical-composition of the human lumbar anulus fibrosus. Spine 19:1310–1319

    Article  PubMed  CAS  Google Scholar 

  8. Kasra M, Parnianpour M, Shirazi Adl A, Wang JL, Grynpas MD (2004) Effect of strain rate on tensile properties of sheep disc annulus fibrosus. Technol Healthc 12:333–342

    CAS  Google Scholar 

  9. Melrose J, Smith SM, Appleyard RC, Little CB (2008) Aggrecan, versican and type VI collagen are components of annulus trans-lamellar cross-bridges in the intervertebral disc. Eur Spine J 17:314–324

    Article  PubMed  Google Scholar 

  10. Schollum ML, Robertson PA, Broom ND (2008) ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus part I: a microscopic investigation of the trans-lamellar bridging network. Spine 33:2702–2710

    Article  PubMed  Google Scholar 

  11. Adams MA, Green TP (1993) Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength. Eur Spine J 2:203–208

    Article  PubMed  CAS  Google Scholar 

  12. Yu J, Fairbank JCT, Roberts S, Urban JPG (2005) The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine 30:1815–1820

    Article  PubMed  Google Scholar 

  13. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531

    Article  PubMed  CAS  Google Scholar 

  14. Marshall LW, McGill SM (2009) The role of axial torque in disc herniation. Clin Biomech 25:6–9

    Article  Google Scholar 

  15. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    Article  PubMed  Google Scholar 

  16. Vernon-Roberts B, Fazzalari NL, Manthey BA (1997) Pathogenesis of tears of the anulus investigated by multiple-level transaxial analysis. Spine 22:2641–2646

    Article  PubMed  CAS  Google Scholar 

  17. Ahsan T, Sah RL (1999) Biomechanics of integrative cartilage repair. Osteoarthr Cartil 7:29–40

    Article  PubMed  CAS  Google Scholar 

  18. Anderson T (1995) Fracture mechanics: fundamentals and applications. 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  19. ASTM Standard D1876–08 (2008) Standard test method for peel resistance of adhesives (T-Peel Test). ASTM International, West Conshohocken

    Google Scholar 

  20. Taghizadeh SM, Soroushnia A, Mohamadnia F (2010) Preparation and in vitro evaluation of a new fentanyl patch based on functional and non-functional pressure sensitive adhesives. AAPS PharmSciTech 11:278–284

    Article  PubMed  CAS  Google Scholar 

  21. Renvoise J, Burlot D, Marin G, Derail C (2009) Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int J Pharm 368:83–88

    Article  PubMed  CAS  Google Scholar 

  22. Dykes PJ, Heggie R (2003) The link between the peel force of adhesive dressings and subjective discomfort in volunteer subjects. J Wound Care 12:260–262

    PubMed  CAS  Google Scholar 

  23. Hatamleh MM, Watts DC (2010) Bonding of maxillofacial silicone elastomers to an acrylic substrate. Dent Mater 26:387–395

    Article  PubMed  CAS  Google Scholar 

  24. Tanimoto Y, Saeki H, Kimoto S, Nishiwaki T, Nishiyama N (2009) Evaluation of adhesive properties of three resilient denture liners by the modified peel test method. Acta Biomater 5:764–769

    Article  PubMed  Google Scholar 

  25. Machado AL, Breeding LC, Puckett AD (2005) Effect of microwave disinfection on the hardness and adhesion of two resilient liners. J Prosthet Dent 94:183–189

    Article  PubMed  CAS  Google Scholar 

  26. Kumar D, Novince R, Strohl A, Mercer BM, Mansour JM, Moore RM, Moore JJ (2009) A new methodology to measure strength of adherence of the fetal membrane components, amnion and the choriodecidua. Placenta 30:560–563

    Article  PubMed  CAS  Google Scholar 

  27. Scotti C, Wirz D, Wolf F, Dirk J, Schaefer DJ, Burgin V, Daniels AU, Valderrabano V, Candrian C, Jakob M, Martin I, Barbero A (2010) Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials 31:2252–2259

    Article  PubMed  CAS  Google Scholar 

  28. Englert C, Greiner G, Berner A, Hammer J (2008) T-peel test for the analysis of articular cartilage integration. Stud Health Technol Inform 133:95–102

    PubMed  CAS  Google Scholar 

  29. Miyamoto K, Masuda K, Inoue N, Okuma M, Muehleman C, An HS (2006) Anti-adhesion properties of a thrombin-based hemostatic gelatin in a canine laminectomy model: a biomechanical, biochemical, and histologic study. Spine 31:E91–E97

    Article  PubMed  Google Scholar 

  30. Sonoda M, Harwood FL, Amiel ME, Moriya H, Temple M, Chang DG, Lottman LM, Sah RL, Amiel D (2000) The effects of hyaluronan on tissue healing after meniscus injury and repair in a rabbit model. Am J Sports Med 28:90–97

    PubMed  CAS  Google Scholar 

  31. Pfirrmann CWA, Metxdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  PubMed  CAS  Google Scholar 

  32. Fujita Y, Wagner DR, Biviji AA, Duncan NA, Lotz JC (2000) Anisotropic shear behaviour of the annulus fibrosus: effect of harvest site and tissue prestrain. Med Eng Phys 22:349–357

    Article  PubMed  CAS  Google Scholar 

  33. Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behaviour of the human annulus fibrosus: experimental measurement and material model predictions. J Biomech Eng 123:256–263

    Article  PubMed  CAS  Google Scholar 

  34. Schollum ML, Appleyard RC, Little CB, Melrose J (2010) A detailed microscopic examination of alterations in normal anular structure induced by mechanical destabilization in an ovine model of disc degeneration. Spine 35:1965–1973

    Article  PubMed  Google Scholar 

  35. Schollum ML, Robertson PA, Broom ND (2009) A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the trans-lamellar bridges. J Anat 214:805–816

    Article  PubMed  Google Scholar 

  36. Skrzypiec D, Tarala M, Pollintine P, Dolan P, Adams MA (2007) When are intervertebral discs stronger than their adjacent vertebrae? Spine 32:2455–2461

    Article  PubMed  Google Scholar 

  37. Adams M, Bogduk N, Burton K, Dolan P (2006) The biomechanics of back pain. Elsevier Ltd, Toronto

    Google Scholar 

  38. Gregory DE, Veldhuis JH, Horst C, Brodland GW, Callaghan JP (2011) Novel lap test determines the mechanics of delamination between annular lamellae of the intervertebral disc. J Biomech 44:97–102

    Article  PubMed  Google Scholar 

  39. Tampier C, Drake JD, Callaghan JP, McGill SM (2007) Progressive disc herniation: an investigation of the mechanism using radiological, histochemical, and microscopic dissection techniques on a porcine model. Spine 32:2869–2874

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge NIH for funding (NIH P01AR48152). Diane Gregory was further supported by a NSERC postdoctoral fellowship and the ISSLS McNab-Larocca fellowship for this research.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Masuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, D.E., Bae, W.C., Sah, R.L. et al. Anular delamination strength of human lumbar intervertebral disc. Eur Spine J 21, 1716–1723 (2012). https://doi.org/10.1007/s00586-012-2308-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2308-x

Keywords

Navigation