Skip to main content

Advertisement

Log in

Vertebral deformity arising from an accelerated “creep” mechanism

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. “Creep” is continuous deformation under constant load.

Materials and methods

Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42–92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated.

Results

Vertebral body creep was measurable in specimens with BMD <0.5 g/cm2. Creep was greater anteriorly than posteriorly (p < 0.001), so that vertebrae gradually developed a wedge deformity. Compressive overload reduced specimen height by 2.24 mm (STD 0.77 mm), and increased vertebral body creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P < 0.001). Vertebral body wedging during the 2nd creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r 2 = 0.51, p < 0.001, n = 34).

Conclusions

Minor damage to an old vertebral body, even if it is barely discernible on radiographs, can accelerate creep to such an extent that it makes a substantial contribution to vertebral deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burger H, Van Daele PL, Grashuis K, Hofman A, Grobbee DE et al (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157

    Article  PubMed  CAS  Google Scholar 

  2. Ettinger B, Black DM, Nevitt MC, Rundle AC, Cauley JA et al (1992) Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 7:449–456

    Article  PubMed  CAS  Google Scholar 

  3. Grados F, Fechtenbaum J, Flipon E, Kolta S, Roux C et al (2009) Radiographic methods for evaluating osteoporotic vertebral fractures. Jt Bone Spine 76:241–247

    Article  Google Scholar 

  4. Jiang G, Luo J, Pollintine P, Dolan P, Adams MA et al (2010) Vertebral fractures in the elderly may not always be “osteoporotic”. Bone 47:111–116

    Article  PubMed  CAS  Google Scholar 

  5. Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, European Vertebral Osteoporosis Study Group et al (1999) Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. Osteoporos Int 9:206–213

    Article  PubMed  CAS  Google Scholar 

  6. Rao RD, Singrakhia MD (2003) Painful osteoporotic vertebral fracture. Pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J Bone Jt Surg Am 85-A:2010–2022

    Google Scholar 

  7. Cortet B, Roches E, Logier R, Houvenagel E, Gaydier-Souquieres G et al (2002) Evaluation of spinal curvatures after a recent osteoporotic vertebral fracture. Jt Bone Spine 69:201–208

    Article  Google Scholar 

  8. Weinstein JN (2009) Balancing science and informed choice in decisions about vertebroplasty. N Engl J Med 361:619–621

    Article  PubMed  CAS  Google Scholar 

  9. Jager PL, Jonkman S, Koolhaas W, Stiekema A, Wolffenbuttel BH et al (2011) Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations. Osteoporos Int 22(4):1059–1068

    Google Scholar 

  10. Yamamoto E, Paul Crawford R, Chan DD, Keaveny TM (2006) Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J Biomech 39:1812–1818

    Article  PubMed  Google Scholar 

  11. Currey JD (1965) Anelasticity in bone and echinoderm skeletons. J Exp Biol 43:279–292

    Google Scholar 

  12. Zilch H, Rohlmann A, Bergmann G, Kolbel R (1980) Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties. Arch Orthop Trauma Surg 97:257–262

    Article  PubMed  CAS  Google Scholar 

  13. Burgers TA, Lakes RS, Garcia-Rodriguez S, Piller GR, Ploeg HL (2009) Post-yield relaxation behavior of bovine cancellous bone. J Biomech 42:2728–2733

    Article  PubMed  Google Scholar 

  14. Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45:466–472

    Article  PubMed  Google Scholar 

  15. Pollintine P, van Tunen MS, Luo J, Brown MD, Dolan P et al (2010) Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine (Phila Pa 1976) 35:386–394

    Article  Google Scholar 

  16. Adams MA, Dolan P, Hutton WC (1986) The stages of disc degeneration as revealed by discograms. J Bone Jt Surg [Br] 68:36–41

    CAS  Google Scholar 

  17. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    Article  PubMed  Google Scholar 

  18. McMillan DW, Garbutt G, Adams MA (1996) Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 55:880–887

    Article  PubMed  CAS  Google Scholar 

  19. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24:2468–2474

    Article  PubMed  CAS  Google Scholar 

  20. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech 4(Suppl 2):S1–S27

    Google Scholar 

  21. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine 30:2621–2630

    Article  PubMed  Google Scholar 

  22. Green TP, Allvey JC, Adams MA (1994) Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine 19:2683–2691

    PubMed  CAS  Google Scholar 

  23. Dolan P, Earley M, Adams MA (1994) Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 27:1237–1248

    Article  PubMed  CAS  Google Scholar 

  24. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44:372–379

    Article  PubMed  Google Scholar 

  25. Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21:1409–1416

    Article  PubMed  Google Scholar 

  26. Luo J, Bertram W, Sangar D, Adams MA, Annesley-Williams DJ et al (2010) Is kyphoplasty better than vertebroplasty in restoring normal mechanical function to an injured spine? Bone 46:1050–1057

    Article  PubMed  Google Scholar 

  27. Bowman SM, Gibson LJ, Hayes WC, McMahon TA (1999) Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone. J Biomech Eng 121:253–258

    Article  PubMed  CAS  Google Scholar 

  28. Rimnac CM, Petko AA, Santner TJ, Wright TM (1993) The effect of temperature, stress and microstructure on the creep of compact bovine bone. J Biomech 26:219–228

    Article  PubMed  CAS  Google Scholar 

  29. van der Veen AJ, Mullender MG, Kingma I, Van Deen JH, Smit TH (2008) Contribution of vertebral bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J Biomech 41:1260–1268

    Article  PubMed  Google Scholar 

  30. Bowman SM, Keaveny TM, Gibson LJ, Hayes WC, McMahon TA (1994) Compressive creep behavior of bovine trabecular bone. J Biomech 27:301–310

    Article  PubMed  CAS  Google Scholar 

  31. van der Veen AJ, van Dieen JH, Nadort A, Stam B, Smit TH (2007) Intervertebral disc recovery after dynamic or static loading in vitro: Is there a role for the endplate? J Biomech 40:2230–2235

    Article  PubMed  Google Scholar 

  32. Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006) Osteocyte lacunae tissue strain in cortical bone. J Biomech 39:1735–1743

    Article  PubMed  Google Scholar 

  33. Zioupos P, Hansen U, Currey JD (2008) Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure. J Biomech 41:2932–2939

    Article  PubMed  Google Scholar 

  34. Norman TL, Little TM, Yeni YN (2008) Age-related changes in porosity and mineralization and in-service damage accumulation. J Biomech 41:2868–2873

    Article  PubMed  Google Scholar 

  35. Fleck C, Eifler D (2003) Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading. J Biomech 36:179–189

    Article  PubMed  Google Scholar 

  36. Caler WE, Carter DR (1989) Bone creep-fatigue damage accumulation. J Biomech 22:625–635

    Article  PubMed  CAS  Google Scholar 

  37. Mercer C, He MY, Wang R, Evans AG (2006) Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomater 2:59–68

    Article  PubMed  CAS  Google Scholar 

  38. Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A et al (2004) Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech 37:1413–1420

    Article  PubMed  Google Scholar 

  39. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Jt Surg Br 78:965–972

    Article  CAS  Google Scholar 

  40. Briggs AM, Wrigley TV, van Dieen JH, Phillips B, Lo SK et al (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795

    Article  PubMed  Google Scholar 

  41. Lynch JA, Silva MJ (2008) In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation. Bone 42:942–949

    Article  PubMed  Google Scholar 

  42. Adams MA, McNally DS, Chinn H, Dolan P (1994) Posture and the compressive strength of the lumbar spine. Clin Biomech 9:5–14

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded in the UK by Action Medical Research and the Annett Charitable Trust.

Conflict of interest

None of the authors has any potential conflict of interest.

Ethics approval

This study was approved by Frenchay NHS Research Ethics Committee, Bristol, UK

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Pollintine, P., Gomm, E. et al. Vertebral deformity arising from an accelerated “creep” mechanism. Eur Spine J 21, 1684–1691 (2012). https://doi.org/10.1007/s00586-012-2279-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2279-y

Keywords

Navigation