Skip to main content

Advertisement

Log in

A morphometric cadaver study of the anterior lumbar epidural space

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Free disc fragments end often up in the concavity of the anterior epidural space. This space consists of two compartments. The discrepancy between the impressive magnetic resonance imaging findings, clinical symptoms in patients and the problem of treatment options led us to the anatomical determination of anterior epidural space volumes.

Materials and methods

For the first time, the left and right anterior epidural volume between the peridural membrane and the posterior concavity of the lumbar vertebral bodies L3–S1 were determined for each segment. A CT scan and a polyester resin injection were used for the in vitro measurements.

Results

The volumes determined in human cadavers using this method ranged from 0.23 ccm for L3 to 0.34 ccm for L5. The CT concavity volume determination showed this increase in volume from cranial to caudal, as well.

Conclusion

This volume is large enough to hold average-sized slipped discs without causing neurological deficits. A better understanding of the anterior epidural space may allow a better distinction of patient treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bogduk N (1997) Clinical anatomy of the lumbar spine and sacrum, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  2. Crock H (1983) Practice of spinal surgery. Springer, Berlin

    Google Scholar 

  3. Deyo R, Weinstein J (2001) Low back pain. N Engl J Med 344:363–370

    Article  PubMed  CAS  Google Scholar 

  4. Domisse GF (1975) Morphological aspects of the lumbar spine and lumbosacral regions. Orthop Clin North Am 6:163–175

    Google Scholar 

  5. Fick R (1904) Anatomie und Mechanik der Gelenke: 81. Gustav Fischer, Jena

    Google Scholar 

  6. Haro H, Kato T, Komori H, Takahashi M, Shinomiya K (2001) The mechanism of angiogenesis in herniated disc resorption. Abstr Edinburgh ISSLS:13

  7. Hirabayashi S et al (1990) A dorsally displaced free fragment and histologic findings. Spine 15:1231–1233

    Article  PubMed  CAS  Google Scholar 

  8. Hofmann M (1898) Die Befestigung der Dura mater im Wirbelkanal. Arch Anat Physiol 403–412

  9. Hogan Q (1991) Lumbar epidural anatomy. Anaesthesiology 75:767–775

    Article  CAS  Google Scholar 

  10. Husemeyer RP, White DC (1980) Topography of the lumbar epidural space. A study in cadavers using injected polyester resin. Anaesthesia 35:7–11

    Article  PubMed  CAS  Google Scholar 

  11. Karpinnen A, Haapea M, Vanharanta H, Tervonen O (2004) Determinants of disc herniation resorption one year follow up. Abstr 252, Porto ISSLS:606

    Google Scholar 

  12. Kato T, Haro H, Komori H, Shinomiya K (2003) The cascade of the spontaneous herniated disc resorption process. Vancouver ISSLS:12

  13. Kawaji Y, Uchiyama S, Yagi E (2001) Three dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI. J Orthop 6(6):498–502

    CAS  Google Scholar 

  14. Kikuchi S, Hasue M, Nishiyama K et al (1984) Anatomic and clinical studies of radicular symptoms. Spine 9:23–30

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi S, Baba H et al (2005) Effect of mechanical compression on the lumbar nerve root: localization and changes of intraradicular inflammatory cytokines, nitric oxide and cyclooxygenase. Spine 30:1699–1705

    Article  PubMed  Google Scholar 

  16. Kraemer J (2008) Intervertebral disc diseases, 3rd edn. Thieme, Stuttgart

    Google Scholar 

  17. Kraemer J (1995) Natural course and prognosis of intervertebral disc diseases. Spine 20:635–639

    Article  PubMed  CAS  Google Scholar 

  18. Kraemer J, Koester O (2003) MR imaging of the lumbar spine. Thieme, Stuttgart

    Google Scholar 

  19. Kraemer R, Wild A, Haak H, Herdmann J, Kraemer J (2004) Microscopic lumbar discectomy. In: Herkowitz H (ed) The lumbar spine. Lippincott, Philadelphia, pp 453–463

    Google Scholar 

  20. Larsen JL (1985) The posterior surface of the lumbar vertebral bodies—part 1. Spine 10:50–58

    Article  PubMed  CAS  Google Scholar 

  21. Larsen JL (1985) The posterior surface of the lumbar vertebral bodies-part 2: an anatomic investigation concerning the curvatures in the horizontal plane. Spine 10:901–906

    Article  PubMed  CAS  Google Scholar 

  22. Mc Culloch J, Young P (1998) Essentials of spinal microsurgery. Lippincott Raven, New York

    Google Scholar 

  23. Nakai S, Maehara H, Asai T (2000) A study of the mechanisms of spontaneous regression of lumbar disc herniation using surgical specimen: The appearance of apoptosis and the role of macrophages in the extruded intervertebral disc. Abstr Adelaide ISSLS:95

  24. Olmarker K, Rydevik B (1993) Biochemical influence of nucleus pulposus on cauda equine nerve roots. Spine 18:1425–1432

    PubMed  CAS  Google Scholar 

  25. Parkin I, Harrison G (1985) The topographical anatomy of the lumbar epidural space. J Anat 141:211–217

    PubMed  CAS  Google Scholar 

  26. Postacchini F (1998) Lumbar disc herniation. Springer, Berlin

    Google Scholar 

  27. Rauschning W (1987) Normal and pathological anatomy of the lumbar root canals. Spine 12:1008

    Article  PubMed  CAS  Google Scholar 

  28. Rydevik B, Myers R, Powell H (1989) Pressure increase in the dorsal root ganglion following mechanical compression: closed compartment syndrome in nerve roots. Spine 14:564–566

    Article  Google Scholar 

  29. Saal A, Saal J (1989) Nonoperative treatment of herniated lumbar intervertebral disc. Spine 14:431

    Article  PubMed  CAS  Google Scholar 

  30. Schellinger D, Manz HJ, Vidic B, Patronas NJ, Deveikis JP, Muraki AS, Abdullah DC (1990) Disk fragment migration. Radiology 175(3):831–836

    PubMed  CAS  Google Scholar 

  31. Schmorl G, Junghanns H (1968) Die gesunde und die kranke wirbelsäule in röntgenbild und klinik, 5th edn. Thieme, Stuttgart

    Google Scholar 

  32. van Roy P (2000) Anatomy of the lumbar canal. In: Gunzburg R, Szpalski M (eds) Lumbar spinal stenosis. Lippincott, Philadelphia, pp 7–25

    Google Scholar 

  33. Tampie C, Drake J, Callaghan J, McGill S (2007) Progressive disc herniation. Spine 32(25):2869–2874

    Article  Google Scholar 

  34. Willburger R, Ehiosun U, Kuhnen C, Kraemer J, Schmid G (2004) Clinical symptoms in lumbar disc herniations and their correlation to the histological composition of the extruded disc material. Spine 29:1–6

    Article  Google Scholar 

  35. Wiltse LL, Fonseca AS, Amster J, Dimartino P, Ravessoud FA (1993) Relationship of the dura, Batson’s plexus, and a fibrovascular membrane lying on the posterior surface of the deep layer of the posterior ligament. An anatomical, radiologic and clinical study. Spine 18(8):1030–1043

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Teske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teske, W., Krämer, J., Lichtinger, T. et al. A morphometric cadaver study of the anterior lumbar epidural space. Eur Spine J 21, 1479–1482 (2012). https://doi.org/10.1007/s00586-011-2139-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-2139-1

Keywords

Navigation