Skip to main content

Advertisement

Log in

Experimental in vivo acute and chronic biomechanical and histomorphometrical comparison of self-drilling and self-tapping anterior cervical screws

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Self-drilling screws (SDS) and self-tapping screws (STS) allow for quicker bone insertion and are associated with increased anchorage. This is an experimental in vivo comparison of anterior cervical SDS and STS in the post-insertion acute and chronic phases.

Methods

Thirty C2–C6 vertebrae from six Santa Inês hair sheep were used. Each screw design was randomly assigned to five of each spinal level. Insertion torque was measured using a torque device. Three animals were killed in each phase. Vertebrae were randomly assigned to pullout tests and histomorphometrical bone–screw interface evaluation (percent screw–bone contact and bone density inside and outside the threaded area). Statistical significance was set at P < 0.05.

Results

SDS insertion torque was greater than STS (P = 0.0001). SDS pullout strength was significantly greater than STS in the acute and chronic phases (P = 0.0001, 0.0003, respectively). SDS percent screw–bone contact and inside area bone density were significantly greater in both phases. No outside area bone density differences were observed in either phase.

Conclusions

SDS had higher insertion torque and better anchorage than STS in both phases. SDS percent bone–screw contact and inside area bone density were higher in both phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aebi M, Zuber K, Marchesi D (1991) Treatment of cervical spine injuries with anterior plating. Indications, techniques, and results. Spine (Phila Pa 1976) 16:S38–S45

    Article  CAS  Google Scholar 

  2. Champy M, Lodde JP, Schmitt R et al (1978) Mandibular osteosynthesis by miniature screwed plates via a buccal approach. J Maxillofac Surg 6:14–21

    Article  PubMed  CAS  Google Scholar 

  3. Chapman JR, Harrington RM, Lee KM et al (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398

    Article  PubMed  CAS  Google Scholar 

  4. Chavassieux P, Pastoureau P, Boivin G et al (1991) Dose effects on ewe bone remodeling of short-term sodium fluoride administration—a histomorphometric and biochemical study. Bone 12:421–427

    Article  PubMed  CAS  Google Scholar 

  5. Conrad BP, Cordista AG, Horodyski M et al (2005) Biomechanical evaluation of the pullout strength of cervical screws. J Spinal Disord Tech 18:506–510

    Article  PubMed  Google Scholar 

  6. den Boer FC, Patka P, Bakker FC et al (1999) New segmental long bone defect model in sheep: quantitative analysis of healing with dual energy X-ray absorptiometry. J Orthop Res 17:654–660

    Article  Google Scholar 

  7. Ellis JA Jr, Laskin DM (1994) Analysis of seating and fracturing torque of bicortical screws. J Oral Maxillofac Surg 52:483–486

    Article  PubMed  Google Scholar 

  8. Grubb MR, Currier BL, Shih JS et al (1998) Biomechanical evaluation of anterior cervical spine stabilization. Spine (Phila Pa 1976) 23:886–892

    Article  CAS  Google Scholar 

  9. Guntermann J, Gellrich NC, Schramm A et al (1998) The Synthes 1.5 and 2.0 self-drilling screws indication in maxillofacial surgery. J Craniomaxillofac Surg 26:65

    Google Scholar 

  10. Hadjipavlou AG, Nicodemus CL, al-Hamdan FA et al (1997) Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct. J Spinal Disord 10:12–19

    Article  PubMed  CAS  Google Scholar 

  11. Heidemann W, Gerlach KL (1999) Clinical applications of drill free screws in maxillofacial surgery. J Craniomaxillofac Surg 27:252–255

    Article  PubMed  CAS  Google Scholar 

  12. Heidemann W, Gerlach KL, Grobel KH et al (1998) Drill Free Screws: a new form of osteosynthesis screw. J Craniomaxillofac Surg 26:163–168

    Article  PubMed  CAS  Google Scholar 

  13. Heidemann W, Terheyden H, Gerlach KL (2001) Analysis of the osseous/metal interface of drill free screws and self-tapping screws. J Craniomaxillofac Surg 29:69–74

    Article  PubMed  CAS  Google Scholar 

  14. Heidemann W, Terheyden H, Gerlach KL (2001) In vivo studies of screw-bone contact of drill-free screws and conventional self-tapping screws. Mund Kiefer Gesichtschir 5:17–21

    Article  PubMed  CAS  Google Scholar 

  15. Hitchon PW, Brenton MD, Coppes JK et al (2003) Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine (Phila Pa 1976) 28:9–13

    Article  Google Scholar 

  16. Johnston TL, Karaikovic EE, Lautenschlager EP et al (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6:667–672

    Article  PubMed  Google Scholar 

  17. Kaiser MG, Haid RW Jr, Subach BR et al (2002) Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery 50:229–236

    PubMed  Google Scholar 

  18. Liebschner MA (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25:1697–1714

    Article  PubMed  CAS  Google Scholar 

  19. Lohr J, Gellrich NC, Buscher P et al (2000) Comparative in vitro studies of self-boring and self-tapping screws. Histomorphological and physical-technical studies of bone layers]. Mund Kiefer Gesichtschir 4:159–163

    Article  PubMed  CAS  Google Scholar 

  20. Mischkowski RA, Kneuertz P, Florvaag B et al (2008) Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxillary area. Int J Oral Maxillofac Surg 37:948–954

    Article  PubMed  CAS  Google Scholar 

  21. Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S–284S

    PubMed  CAS  Google Scholar 

  22. Ogon M, Haid C, Krismer M et al (1996) Comparison between single-screw and triangulated, double-screw fixation in anterior spine surgery. A biomechanical test. Spine (Phila Pa 1976) 21:2728–2734

    Article  CAS  Google Scholar 

  23. Oktenoglu BT, Ferrara LA, Andalkar N et al (2001) Effects of hole preparation on screw pullout resistance and insertional torque: a biomechanical study. J Neurosurg 94:91–96

    PubMed  CAS  Google Scholar 

  24. Omeis I, DeMattia JA, Hillard VH et al (2004) History of instrumentation for stabilization of the subaxial cervical spine. Neurosurg Focus 16:E10

    Article  PubMed  Google Scholar 

  25. Pastoureau P, Arlot M, Caulin F, Barlet J, Meunier P, Delmas P (1989) Effects of oophorectomy on biochemical and histological indices of bone turnover in ewes. J Bone Miner Res 4:S237, abstract 477

    Google Scholar 

  26. Pearce AI, Richards RG, Milz S et al (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10

    PubMed  CAS  Google Scholar 

  27. Pitzen T, Barbier D, Tintinger F et al (2002) Screw fixation to the posterior cortical shell does not influence peak torque and pullout in anterior cervical plating. Eur Spine J 11:494–499

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Olaverri JC, Hasharoni A, DeWal H et al (2005) The effect of end screw orientation on the stability of anterior instrumentation in cyclic lateral bending. Spine J 5:554–557

    Article  PubMed  Google Scholar 

  29. Ronderos JF, Jacobowitz R, Sonntag VK et al (1997) Comparative pull-out strength of tapped and untapped pilot holes for bicortical anterior cervical screws. Spine (Phila Pa 1976) 22:167–170

    Article  CAS  Google Scholar 

  30. Ruland CM, McAfee PC, Warden KE et al (1991) Triangulation of pedicular instrumentation. A biomechanical analysis. Spine (Phila Pa 1976) 16:S270–S276

    Article  CAS  Google Scholar 

  31. Ryken TC, Clausen JD, Traynelis VC et al (1995) Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws. J Neurosurg 83:325–329

    PubMed  CAS  Google Scholar 

  32. Ryken TC, Goel VK, Clausen JD, Traynelis VC (1995) Assessment of unicortical and bicortical fixation in a quasistatic cadaveric model. Role of bone mineral density and screw torque. Spine (Phila Pa 1976) 20:1861–1867

    Google Scholar 

  33. Schatzker J, Sanderson R, Murnaghan JP (1975) The holding power of orthopedic screws in vivo. Clin Orthop Relat Res 108:115–126

    Google Scholar 

  34. Schimming R, Gutwald R, Gellrich N et al (1999) Selfdrilling screws: clinical experiences in cranio- and maxillofacial surgery. Int J Oral Maxillofac Surg 28:26

    Article  Google Scholar 

  35. Scholz M, Reyes PM, Schleicher P et al (2009) A new stand-alone cervical anterior interbody fusion device: biomechanical comparison with established anterior cervical fixation devices. Spine (Phila Pa 1976) 34:156–160

    Article  Google Scholar 

  36. Sowden D, Schmitz JP (2002) AO self-drilling and self-tapping screws in rat calvarial bone: an ultrastructural study of the implant interface. J Oral Maxillofac Surg 60:294–299

    Article  PubMed  Google Scholar 

  37. Su YY, Wilmes B, Honscheid R, Drescher D (2009) Comparison of self-tapping and self-drilling orthodontic mini-implants: an animal study of insertion torque and displacement under lateral loading. Int J Oral Maxillofac Implants 24:404–411

    PubMed  Google Scholar 

  38. Wu X, Deng F, Wang Z et al (2008) Biomechanical and histomorphometric analyses of the osseointegration of microscrews with different surgical techniques in beagle dogs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:644–650

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Council for Scientific and Technological Development (CNPq).

Conflict of interest

There are no conflicts of interest of any kind related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano Aguiar Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porto, M.A., Silva, P., Rosa, R. et al. Experimental in vivo acute and chronic biomechanical and histomorphometrical comparison of self-drilling and self-tapping anterior cervical screws. Eur Spine J 21, 956–963 (2012). https://doi.org/10.1007/s00586-011-2120-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-2120-z

Keywords

Navigation