Skip to main content
Log in

Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposus-like cells

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Cell-based therapies for regeneration of the degenerated intervertebral disc (IVD) are an alternative to current surgical intervention. Mesenchymal stem cells (MSCs), in combination with a scaffold, might be ideal candidates for regenerating nucleus pulposus (NP), the pressure-distributing part of the IVD. While the use of growth factors for MSCs differentiation currently receives major attention, in this study we compare the performance of sponge-like matrixes in supporting cell differentiation into NP-like cells.

Materials and methods

Four types matrixes approved as medical devices for other applications were tested as scaffolds for MSCs: two made of equine or porcine collagen, one of gelatin and one of chitosan. Bone marrow-derived human MSCs were seeded in these scaffolds or embedded in alginate, as a three-dimensional control. After five weeks in culture, NP-like differentiation of the cell-scaffold constructs was analyzed by qRT-PCR, histology, total DNA quantification, proteoglycan accumulation and immunohistochemistry.

Results

MSCs in collagen matrixes and gelatin produced more mRNA and proteins of the chondrogenic markers collagen type I, collagen type II (COL2) and aggrecan (ACAN), when compared with cells embedded in alginate or chitosan. Proteoglycan accumulation and cell survival were also higher in collagen and gelatin matrixes. Gene expression results were also confirmed by histological and immunohistochemical staining. In contrast to alginate control, the gene expression of the undesired bone marker osteopontin was lower in all tested groups. In porcine collagen supports, MSC expression ratio between COL2/ACAN closely resembled the expression of nucleus pulposus cells, but gene expression of recently described NP markers keratin19, PAX1 and FOXF1 was lower.

Conclusions

Collagen supports provide a readily available, medically approved and effective scaffold for chondrogenic differentiation in vitro, but the phenotype of differentiated MSCs is not yet completely equivalent to that of NP cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA (2007) Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 22:1033–1041

    PubMed  CAS  Google Scholar 

  2. Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97

    Article  PubMed  CAS  Google Scholar 

  3. Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63 (discussion 63–64, vol008a06 [pii])

    PubMed  CAS  Google Scholar 

  4. Zhang Y, Sun Z, Liu J, Guo X (2008) Advances in susceptibility genetics of intervertebral degenerative disc disease. Int J Biol Sci 4:283–290

    Article  PubMed  CAS  Google Scholar 

  5. Pye SR, Reid DM, Adams JE, Silman AJ, O’Neill TW (2007) Influence of weight, body mass index and lifestyle factors on radiographic features of lumbar disc degeneration. Ann Rheum Dis 66:426–427. doi:10.1136/ard.2006.057166

    Article  PubMed  Google Scholar 

  6. Sobajima S, Kim JS, Gilbertson LG, Kang JD (2004) Gene therapy for degenerative disc disease. Gene Ther 11:390–401. doi:10.1038/sj.gt.3302200

    Article  PubMed  CAS  Google Scholar 

  7. Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD (2008) Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J 8:888–896. doi:10.1016/j.spinee.2007.09.011

    Article  PubMed  Google Scholar 

  8. Meisel HJ, Siodla V, Ganey T, Minkus Y, Hutton WC, Alasevic OJ (2007) Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc. Biomol Eng 24:5–21. doi:10.1016/j.bioeng.2006.07.002

    Article  PubMed  CAS  Google Scholar 

  9. Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120:113–130

    PubMed  CAS  Google Scholar 

  10. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316. pii: 008.003.03

    Article  PubMed  CAS  Google Scholar 

  11. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841–7845. doi:10.1073/pnas.141221698

    Article  PubMed  CAS  Google Scholar 

  12. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. doi:10.1038/nature00870

    Article  PubMed  CAS  Google Scholar 

  13. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  14. Calvert JW, Marra KG, Cook L, Kumta PN, DiMilla PA, Weiss LE (2000) Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. J Biomed Mater Res 52:279–284. doi:10.1002/1097-4636(200011)52:2<279:AID-JBM6>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  15. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80:1745–1757

    PubMed  CAS  Google Scholar 

  16. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. doi:10.1186/1471-2121-7-14

    Article  PubMed  Google Scholar 

  17. van den Bogaerdt AJ, van der Veen VC, van Zuijlen PP, Reijnen L, Verkerk M, Bank RA, Middelkoop E, Ulrich MM (2009) Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation? Wound Repair Regen 17:548–558. doi:10.1111/j.1524-475X.2009.00501.x

    Article  PubMed  Google Scholar 

  18. Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200. doi:10.1006/excr.2001.5278

    Article  PubMed  CAS  Google Scholar 

  19. Shen B, Wei A, Tao H, Diwan AD, Ma DD (2009) BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng Part A 15:1311–1320. doi:10.1089/ten.tea.2008.0132

    Article  PubMed  CAS  Google Scholar 

  20. Miljkovic ND, Cooper GM, Marra KG (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartilage 16:1121–1130. doi:10.1016/j.joca.2008.03.003

    Article  PubMed  CAS  Google Scholar 

  21. Cook SD, Patron LP, Salkeld SL, Rueger DC (2003) Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am 85-A(Suppl 3):116–123

    PubMed  Google Scholar 

  22. Feng G, Wan Y, Balian G, Laurencin CT, Li X (2008) Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors 26:132–142. doi:10.1080/08977190802105917

    Article  PubMed  CAS  Google Scholar 

  23. Huang CY, Reuben PM, D’Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A Discov Mol Cell Evol Biol 278:428–436. doi:10.1002/ar.a.20010

    Article  PubMed  Google Scholar 

  24. Diduch DR, Jordan LC, Mierisch CM, Balian G (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16:571–577. doi:10.1053/jars.2000.4827

    Article  PubMed  CAS  Google Scholar 

  25. Ma HL, Hung SC, Lin SY, Chen YL, Lo WH (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64:273–281. doi:10.1002/jbm.a.10370

    Article  PubMed  Google Scholar 

  26. Gaetani P, Torre ML, Klinger M, Faustini M, Crovato F, Bucco M, Marazzi M, Chlapanidas T, Levi D, Tancioni F, Vigo D, Rodriguez y Baena R (2008) Adipose-derived stem cell therapy for intervertebral disc regeneration: an in vitro reconstructed tissue in alginate capsules. Tissue Eng Part A 14:1415–1423. doi:10.1089/ten.tea.2007.0330

    Article  PubMed  CAS  Google Scholar 

  27. Seguin CA, Grynpas MD, Pilliar RM, Waldman SD, Kandel RA (2004) Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine (Phila Pa 1976) 29:1299–1306.doi:00007632-200406150-00005 (discussion 1306–1307)

    Article  Google Scholar 

  28. Martin I, Shastri VP, Padera RF, Yang J, Mackay AJ, Langer R, Vunjak-Novakovic G, Freed LE (2001) Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. J Biomed Mater Res 55:229–235. doi:10.1002/1097-4636(200105)55:2<229:AID-JBM1009>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094. doi:10.1016/j.biomaterials.2005.05.022

    Article  PubMed  CAS  Google Scholar 

  30. Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine (Phila Pa 1976) 28:446–454. doi:10.1097/01.BRS.0000048672.34459.31 (discussion 453)

    Google Scholar 

  31. Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA (2008) Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 29:85–93. doi:10.1016/j.biomaterials.2007.09.018

    Article  PubMed  CAS  Google Scholar 

  32. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res 52:246–255. doi:10.1002/1097-4636(200011)52:2<246:AID-JBM2>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  33. Bjornsson S (1993) Simultaneous preparation and quantitation of proteoglycans by precipitation with alcian blue. Anal Biochem 210:282–291. doi:10.1006/abio.1993.1197

    Article  PubMed  CAS  Google Scholar 

  34. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. doi:10.1080/14653240600855905

    Article  PubMed  CAS  Google Scholar 

  35. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010) Characterisation of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62(12):3695–3705 (10.1002/art.27710)

    Article  PubMed  Google Scholar 

  36. Rutges J, Creemers LB, Dhert W, Milz S, Sakai D, Mochida J, Alini M, Grad S (2010) Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration. Osteoarthritis Cartilage 18:416–423. doi:10.1016/j.joca.2009.09.009

    Article  PubMed  CAS  Google Scholar 

  37. Fragonas E, Valente M, Pozzi-Mucelli M, Toffanin R, Rizzo R, Silvestri F, Vittur F (2000) Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 21:795–801. pii: S0142961299002410

    Article  PubMed  CAS  Google Scholar 

  38. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463. doi:10.1053/joca.2002.0801

    Article  PubMed  CAS  Google Scholar 

  39. Richardson SM, Hoyland JA (2008) Stem cell regeneration of degenerated intervertebral discs: current status. Curr Pain Headache Rep 12:83–88

    Article  PubMed  Google Scholar 

  40. Athanasiou KA, Niederauer GG, Agrawal CM (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17:93–102. pii: 0142961296857541

    Article  PubMed  CAS  Google Scholar 

  41. Hall BK (1987) Earliest evidence of cartilage and bone development in embryonic life. Clin Orthop Relat Res 255–272

Download references

Acknowledgments

This work was supported by the Swiss Paraplegic Foundation. We thank Mr. Beat Haenni, from the Institute of Anatomy of Bern, for technical assistance with scanning electron microscopy.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jivko V. Stoyanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolo, A., Mehr, M., Aebli, N. et al. Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposus-like cells. Eur Spine J 21 (Suppl 6), 826–838 (2012). https://doi.org/10.1007/s00586-011-1975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1975-3

Keywords

Navigation