Equilibrium of the human body and the gravity line: the basics

Abstract

Introduction

Bipedalism is a distinguishing feature of the human race and is characterised by a narrow base of support and an ergonomically optimal position thanks to the appearance of lumbar and cervical curves.

Materials

The pelvis, adapted to bipedalism, may be considered as the pelvic vertebra connecting the spine to the lower limbs. Laterally, the body’s line of gravity is situated very slightly behind the femoral heads laterally, and frontally it runs through the middle of the sacrum at a point equidistant from the two femoral heads.

Results

Any abnormal change through kyphosis regarding the spinal curves results in compensation, first in the pelvis through rotation and then in the lower limbs via knee flexion. This mechanism maintains the line of gravity within the base of support but is not ergonomic. To analyse sagittal balance, we must thus define the parameters concerned and the relationships between them.

Conclusion

These parameters are as follows: for the pelvis: incidence angle, pelvis tilt, sacral slope; for the spine: point of inflexion, apex of lumbar lordosis, lumbar lordosis, spinal tilt at C7; for overall analysis: spino-sacral angle, which is an intrinsic parameter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Berge C (2006) Du marcheur au coureur de fond. Historia mensuel 716:45–61

    Google Scholar 

  2. 2.

    Skoyles JR (2006) Human balance, the evolution of bipedalism and disequilibrium syndrome. Med Hypotheses 66(6):1060–1068

    PubMed  Article  Google Scholar 

  3. 3.

    Berge C (1998) Heterochronic processes in human evolution: an ontogenetic analysis of the hominid pelvis. Am J Phys Anthropol 105(4):441–459

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Dubousset J, Charpak G, Skalli W, de Guise J, Kalifa G, Wicart P (2008) Skeletal and spinal imaging with EOS system. Arch Pediatr 15(5):665–666

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Duval-Beaupère G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462

    PubMed  Article  Google Scholar 

  6. 6.

    Vernazza S, Alexandrov A, Massion J (1996) Is the center of gravity controlled during upper trunk movements? Neurosci Lett 206(2–3):77–80

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31(25):E959–E967

    PubMed  Article  Google Scholar 

  8. 8.

    Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine 31(11):E320–E325

    PubMed  Article  Google Scholar 

  9. 9.

    During J, Goudfrooij H, Keessen W et al (1985) Toward standards for posture. Postural characteristics of the lower back system in normal and pathologic conditions. Spine 10:83–87

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Legaye J, Duval-Beaupère G, Hecquet J et al (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11(1):80–87

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Legaye J, Duval-Beaupere G, Hecquet J, Marty C (1998) The Incidence, fundamental pelvic parameter for the three-dimensional regulation of the spinal sagittal curves. Eur Spine J 7:99–103

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Mac-Thiong JM, Transfeldt EE, Mehbod AA, Perra JH, Denis F, Garvey TA, Lonstein JE, Wu C, Dorman CW, Winter RB (2009) Can C7 plumb line and gravity line predict health related quality of life in adult scoliosis? Spine 34(15):E519–E527

    PubMed  Article  Google Scholar 

  14. 14.

    El Fegoun AB, Schwab F, Gamez L, Champain N, Skalli W, Farcy JP (2005) Center of gravity and radiographic posture analysis: a preliminary review of adult volunteers and adult patients affected by scoliosis. Spine 30(13):1535–1540

    PubMed  Article  Google Scholar 

  15. 15.

    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(3):346–353

    Article  Google Scholar 

  16. 16.

    Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phila Pa 1976) 31(11):E320–E325

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. C. Le Huec.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Huec, J.C., Saddiki, R., Franke, J. et al. Equilibrium of the human body and the gravity line: the basics. Eur Spine J 20, 558 (2011). https://doi.org/10.1007/s00586-011-1939-7

Download citation

Keywords

  • Sagittal balance
  • Gravity line
  • Spino-sacral angle
  • Incidence angle