Skip to main content
Log in

Kinematic evaluation of the adjacent segments after lumbar instrumented surgery: a comparison between rigid fusion and dynamic non-fusion stabilization

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The aim of the current study was to evaluate changes in lumbar kinematics after lumbar monosegmental instrumented surgery with rigid fusion and dynamic non-fusion stabilization. A total of 77 lumbar spinal stenosis patients with L4 degenerative spondylolisthesis underwent L4–5 monosegmental posterior instrumented surgery. Of these, 36 patients were treated with rigid fusion (transforaminal lumbar interbody fusion) and 41 with dynamic stabilization [segmental spinal correction system (SSCS)]. Lumbar kinematics was evaluated with functional radiographs preoperatively and at final follow-up postoperatively. We defined the contribution of each segmental mobility to the total lumbar mobility as the percent segmental mobility [(sagittal angular motion of each segment in degrees)/(total sagittal angular motion in degrees) × 100]. Magnetic resonance imaging was performed on all patients preoperatively and at final follow-up postoperatively. The discs were classified into five grades based on the previously reported system. We defined the progress of disc degeneration as (grade at final follow-up) − (grade at preoperatively). No significant kinematical differences were shown at any of the lumbar segments preoperatively; however, significant differences were observed at the L2–3, L4–5, and L5–S1 segments postoperatively between the groups. At final follow-up, all of the lumbar segments with rigid fusion demonstrated significantly greater disc degeneration than those with dynamic stabilization. Our results suggest that the SSCS preserved 14% of the kinematical operations at the instrumented segment. The SSCS may prevent excessive effects on adjacent segmental kinematics and may prevent the incidence of adjacent segment disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Panjabi M, Henderson G, Abjornson C et al (2007) Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions. Spine 32:1311–1319

    Article  PubMed  Google Scholar 

  2. Panjabi M, Malcolmson G, Teng E et al (2007) Hybrid testing of lumbar CHARITE discs versus fusions. Spine 32:959–966

    Article  PubMed  Google Scholar 

  3. Okuda S, Iwasaki M, Miyauchi A et al (2004) Risk factors for adjacent segment degeneration after PLIF. Spine 29:1535–1540

    Article  PubMed  Google Scholar 

  4. Throckmorton T, Hilibrand A, Mencio G et al (2003) The impact of the adjacent level disc degeneration on health status outcomes following lumbar fusion. Spine 28:2546–2550

    Article  PubMed  Google Scholar 

  5. Shono Y, Kaneda K, Abumi K et al (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine 23:1550–1558

    Article  PubMed  CAS  Google Scholar 

  6. Chow DH, Luk KD, Evans JH et al (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine 21:549–555

    Article  PubMed  CAS  Google Scholar 

  7. Esses SI, Doherty BJ, Crawford MJ et al (1996) Kinematics evaluation of lumbar fusion techniques. Spine 21:676–684

    Article  PubMed  CAS  Google Scholar 

  8. Ghiselli G, Wang JC, Bhatia NN et al (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86:1497–1503

    PubMed  Google Scholar 

  9. McAffee PC, Farey ID, Suttelin CE et al (1989) 1989 Volvo award in basic science. Device-related osteoporosis with spinal instrumentation. Spine 14:919–926

    Article  Google Scholar 

  10. Cakir B, Carazzo C, Schmidt R et al (2009) Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine. Spine 34:1287–1291

    Article  PubMed  Google Scholar 

  11. Korovessis P, Papazisis Z, Koureas G et al (2004) Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis. A correlative radiological and clinical analysis of short-term results. Spine 29:735–742

    Article  PubMed  Google Scholar 

  12. Strempel AV, Neekritz A, Muelenaere PD et al (2000) Dynamic versus rigid spinal implants. In: Gunzburg R, Szpalski M (eds) Lumbar Spinal Stenosis, vol 31. Lippincott Williams & Wilkins, Philadelphia, pp 275–285

    Google Scholar 

  13. Strempel AV, Stoss C, Moosmann D et al (2006) Non-fusion stabilization of the lumbar spine in the case of degenerative diseases with a dynamic pedicle screw rod. Coluna/Columna 5:27–34

    Google Scholar 

  14. Wilke HJ, Heuer F, Schmidt H (2009) Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Spine 34:255–261

    Article  PubMed  Google Scholar 

  15. Kumar A, Beastall J, Hughes J et al (2008) Disc changes in the bridged and adjacent segments after dynesys dynamic stabilization system after two years. Spine 33:2909–2914

    Article  PubMed  Google Scholar 

  16. Niosi CA, Wilson DC, Zhu Q et al (2008) The effect of dynamic posterior stabilization on facet joint contact forces. An in vitro investigation. Spine 33:19–26

    Article  PubMed  Google Scholar 

  17. Cheng BC, Gordon J, Cheng J et al (2007) Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine 32:2551–2557

    Article  PubMed  Google Scholar 

  18. Kanayama M, Hashimoto T, Shigenobu K et al (2007) A minimum 10-year follow-up of posterior dynamic stabilization using Graf artificial ligament. Spine 32:1992–1996

    Article  PubMed  Google Scholar 

  19. Beastall J, Karadimas E, Siddiqui M et al (2007) The Dynesys lumbar spinal stabilization system. A preliminary report on positional magnetic resonance imaging findings. Spine 32:685–690

    Article  PubMed  Google Scholar 

  20. Schnake KJ, Schaeren S, Jeanneret B et al (2006) Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolithesis. Spine 31:442–449

    Article  PubMed  Google Scholar 

  21. Grob D, Benini A, Junge A et al (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine. Spine 30:324–331

    Article  PubMed  Google Scholar 

  22. Meyerding HW (1931) Spondylolisthesis. J Bone Joint Surg Am 13:39–48

    Google Scholar 

  23. Izumida S, Inoue S (1986) Japanese Orthopedic Association Assessment of surgical treatment of low back pain (in Japanese). J Jpn Orthop Assoc 60:391–394

    Google Scholar 

  24. Hirabayashi K, Miyakawa J, Satomi K et al (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 6:354–365

    Article  PubMed  CAS  Google Scholar 

  25. Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  PubMed  CAS  Google Scholar 

  26. Hadlow SV, Fagan AB, Hillier TM et al (1998) The Graf ligamentoplasty procedure: comparison with posterolateral fusion in the management of low back pain. Spine 23:1172–1179

    Article  PubMed  CAS  Google Scholar 

  27. Rigby MC, Selmon GP, Foy MA et al (2001) Graf ligament stabilization: mid- to long-term follw-up. Eur Spine J 10:234–236

    Article  PubMed  CAS  Google Scholar 

  28. Schaeren S, Broger I, Jeanneret B (2008) Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine 33:E636–E642

    Article  PubMed  Google Scholar 

  29. Schmoelz W, Huber JF, Nydegger T et al (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    Article  PubMed  CAS  Google Scholar 

  30. Cunningham BW, Kotani Y, McNulty PS et al (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure. An in vitro biomechanical analysis. Spine 22:2655–2663

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Morishita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morishita, Y., Ohta, H., Naito, M. et al. Kinematic evaluation of the adjacent segments after lumbar instrumented surgery: a comparison between rigid fusion and dynamic non-fusion stabilization. Eur Spine J 20, 1480–1485 (2011). https://doi.org/10.1007/s00586-011-1701-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1701-1

Keywords

Navigation