Skip to main content

Advertisement

Log in

The mechanical response of the lumbar spine to different combinations of disc degenerative changes investigated using randomized poroelastic finite element models

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Degeneration of the intervertebral disc is related to progressive changes in the disc tissue composition and morphology, such as water loss, disc height loss, endplate calcification, osteophytosis. These changes may be present separately or, more frequently, in various combinations. This work is aimed to the biomechanical investigation of a wide range of clinical scenarios of disc degeneration, in which the most common degenerative changes are present in various combinations. A poroelastic non-linear finite element model of the healthy L4–L5 human spine segment was employed and randomly scaled to represent ten spine segments from different individuals. Six different degenerative characteristics (water loss in the nucleus pulposus and annulus fibrosus; calcification and thickness reduction of endplate cartilage; disc height loss; osteophyte formation; diffuse sclerosis) were modeled in 30 randomly generated models, 10 for each overall degree of degeneration (mild, moderate, severe). For each model, a daily loading cycle including 8 h of rest, 16 h in the standing position with superimposed two flexion–extension motion cycles was simulated. A tendency to an increase of stiffness with progressing overall degeneration was observed, in compression, flexion and extension. Hence, instability for mild degeneration was not predicted. Facet forces and fluid loss decreased with disc degeneration. Nucleus, annulus and endplate degeneration, disc height loss, osteophytosis and diffuse sclerosis all induced a statistically significant decrease in the total daily disc height variation, facet force and flexibility in flexion–extension. Therefore, grading systems for disc degeneration should include all the degenerative changes considered in this work, since all of them had a significant influence on the spinal biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams MA, Dolan P (2005) Spine biomechanics. J Biomech 38(10):1972–1983 (Review)

    Article  PubMed  Google Scholar 

  2. Adams MA, Dolan P, Hutton WC (1986) The stages of disc degeneration as revealed by discograms. J Bone Joint Surg Br 68(1):36–41

    PubMed  CAS  Google Scholar 

  3. Adams MA, Dolan P, Hutton WC (1987) Diurnal variations in the stresses on the lumbar spine. Spine (Phila Pa 1976) 12(2):130–137

    Google Scholar 

  4. Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 25(13):1625–1636

    Google Scholar 

  5. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31(18):2151–2161

  6. Amonoo-Kuofi HS (1991) Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age. J Anat 175:159–168

    PubMed  CAS  Google Scholar 

  7. Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29:1331–1339

    Article  PubMed  CAS  Google Scholar 

  8. Arun R, Freeman BJ, Scammell BE, McNally DS, Cox E, Gowland P (2009) What influence does sustained mechanical load have on diffusion in the human intervertebral disc?: an in vivo study using serial postcontrast magnetic resonance imaging. Spine (Phila Pa 1976) 34(21):2324–2333

    Google Scholar 

  9. Battié MC, Videman T, Kaprio J, Gibbons LE, Gill K, Manninen H, Saarela J, Peltonen L (2009) The Twin Spine Study: contributions to a changing view of disc degeneration. Spine J 9(1):47–59

    Article  PubMed  Google Scholar 

  10. Battié MC, Videman T, Levälahti E, Gill K, Kaprio J (2008) Genetic and environmental effects on disc degeneration by phenotype and spinal level: a multivariate twin study. Spine (Phila Pa 1976) 33(25):2801–2808

  11. Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37(2):213–221

    Article  PubMed  Google Scholar 

  12. Frobin W, Brinckmann P, Biggemann M, Tillotson M, Burton K (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech (Bristol, Avon) 12(Suppl 1):1–63

    Article  Google Scholar 

  13. Galbusera F, Schmidt H, Neidlinger-Wilke C, Wilke HJ (2010) The effect of degenerative morphological changes of the intervertebral disc on the lumbar spine biomechanics: a poroelastic finite element investigation. Comp Methods Biomech Biomed Eng (in press)

  14. Goel VK, Monroe BT, Gilbertson LG, Brinckmann P (1995) Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine (Phila Pa 1976) 20(6):689–698

    Google Scholar 

  15. Gruber HE, Ashraf N, Kilburn J, Williams C, Norton HJ, Gordon BE, Hanley EN Jr (2005) Vertebral endplate architecture and vascularization: application of micro-computerized tomography, a vascular tracer, and immunocytochemistry in analyses of disc degeneration in the aging sand rat. Spine (Phila Pa 1976) 30(23):2593–2600

    Google Scholar 

  16. Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine (Phila Pa 1976) 24(23):2449–2455

  17. Haefeli M, Kalberer F, Saegesser D, Nerlich AG, Boos N, Paesold G (2006) The course of macroscopic degeneration in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 31(14):1522–1531

    Google Scholar 

  18. Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3(3):125–140

    Article  PubMed  CAS  Google Scholar 

  19. Kirkaldy-Willis WH, Farfan HF (1982) Instability of the lumbar spine. Clin Orthop Relat Res 165:110–123

    Google Scholar 

  20. Kong MH, Morishita Y, He W, Miyazaki M, Zhang H, Wu G, Hymanson HJ, Wang JC (2009) Lumbar segmental mobility according to the grade of the disc, the facet joint, the muscle, and the ligament pathology by using kinetic magnetic resonance imaging. Spine (Phila Pa 1976) 34(23):2537–2544

    Google Scholar 

  21. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular-cartilage. J Biomech Eng 113:245–258

    Article  PubMed  CAS  Google Scholar 

  22. Lanir Y (1987) Biorheology and fluid flux in swelling tissues, II. Analysis of unconfined compressive response of transversely isotropic cartilage disc. Biorheology 24:189–205

    PubMed  CAS  Google Scholar 

  23. Little JP, Adam CJ, Evans JH, Pettet GJ, Pearcy MJ (2007) Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. J Biomech 40(12):2744–2751

    Article  PubMed  CAS  Google Scholar 

  24. Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila Pa 1976) 19(12):1371–1380

    Google Scholar 

  25. Nachemson A (1960) Lumbar intradiscal pressure. Experimental studies on post-mortem material. Acta Orthop Scand Suppl 43:1–104

    PubMed  CAS  Google Scholar 

  26. Nakamura T, Iribe T, Asou Y, Miyairi H, Ikegami K, Takakuda K (2009) Effects of compressive loading on biomechanical properties of disc and peripheral tissue in a rat tail model. Eur Spine J 18(11):1595–1603

    Article  PubMed  Google Scholar 

  27. Natarajan RN, Williams JR, Andersson GB (2006) Modeling changes in intervertebral disc mechanics with degeneration. J Bone Joint Surg Am 88(Suppl 2):36–40 (Review)

    Article  PubMed  Google Scholar 

  28. Olsen S, Oloyede A, Adam C (2004) A finite element formulation and program to study transient swelling and load-carriage in healthy and degenerate articular cartilage. Comput Methods Biomech Biomed Eng 7(2):111–120

    Article  CAS  Google Scholar 

  29. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 17(3):299–306

  30. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26(17):1873–1878

  31. Riches PE, Dhillon N, Lotz J, Woods AW, McNally DS (2002) The internal mechanics of the intervertebral disc under cyclic loading. J Biomech 35(9):1263–1271

    Article  PubMed  CAS  Google Scholar 

  32. Riches PE, McNally DS (2005) A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc. Proc Inst Mech Eng H 219(5):329–335

    Article  PubMed  CAS  Google Scholar 

  33. Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G (2006) Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 39(13):2484–2490

    Article  PubMed  Google Scholar 

  34. Seidler A, Bergmann A, Jäger M, Ellegast R, Ditchen D, Elsner G, Grifka J, Haerting J, Hofmann F, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Schumann B, Bolm-Audorff U (2009) Cumulative occupational lumbar load and lumbar disc disease—results of a German multi-center case–control study (EPILIFT). BMC Musculoskelet Disord 7:10–48

    Google Scholar 

  35. Schmidt H, Galbusera F, Wilke HJ, Shirazi-Adl A (2010) Remedy for fictive negative pressure in biphasic finite element models of the intervertebral disc during unloading. Comput Meth Biomech Biomed Eng (in press)

  36. Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon) 22:377–384

    Article  Google Scholar 

  37. Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ (2007) The risk of disc prolapses with complex loading in different degrees of disc degeneration—a finite element analysis. Clin Biomech (Bristol, Avon) 22(9):988–998

    Article  Google Scholar 

  38. Schmidt H, Shirazi-Adl A, Galbusera F, Wilke HJ (2010) Response analysis of the lumbar spine during regular daily activities—a finite element analysis. J Biomech 43(10):1849–1856

    Article  PubMed  Google Scholar 

  39. Shao Z, Rompe G, Schiltenwolf M (2002) Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine (Phila Pa 1976) 27(3):263–268

    Google Scholar 

  40. Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM (2001) The relationship between disc degeneration and flexibility of the lumbar spine. Spine J 1(1):47–56

    Article  PubMed  CAS  Google Scholar 

  41. Thompson RE, Pearcy MJ, Barker TM (2004) The mechanical effects of intervertebral disc lesions. Clin Biomech (Bristol, Avon) 19(5):448–455

    Article  Google Scholar 

  42. Urban JP, Maroudas A (1981) Swelling of the intervertebral disc in vitro. Connect Tissue Res 9:1–10

    Article  PubMed  CAS  Google Scholar 

  43. Urban JP, McMullin JF (1985) Swelling pressure of the intervertebral disc: influence of proteoglycan and collagen contents. Biorheology 22:145–157

    PubMed  CAS  Google Scholar 

  44. Urban JP, McMullin JF (1988) Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine 13:179–187

    Article  PubMed  CAS  Google Scholar 

  45. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130

    Article  PubMed  Google Scholar 

  46. Vernon-Roberts B, Moore RJ, Fraser RD (2008) The natural history of age-related disc degeneration: the influence of age and pathology on cell populations in the L4–L5 disc. Spine (Phila Pa 1976) 33(25):2767–2773

  47. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24(8):755–762

    Google Scholar 

  48. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A (2006) Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part I. Lumbar spine. Eur Spine J 15(6):720–730

    Article  PubMed  Google Scholar 

  49. Wilke HJ, Rohlmann F, Ring C, Mack C, Neidlinger-Wilke C, Kettler A (2009) Is a mild intervertebral disc degeneration really a sign for an instability? 4 Deutscher Wirbelsäulenkongress, Jahrestagung der Deutschen Wirbelsäulengesellschaft. München. Eur Spine J 1742–1743

Download references

Acknowledgments

This project is funded by the EU FP-7 project GENODISC (HEALTH-F2-2008-201626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Galbusera.

Additional information

Fabio Galbusera is a PhD student at the University of Ulm, Germany, and has an exclusive research collaboration with IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galbusera, F., Schmidt, H., Neidlinger-Wilke, C. et al. The mechanical response of the lumbar spine to different combinations of disc degenerative changes investigated using randomized poroelastic finite element models. Eur Spine J 20, 563–571 (2011). https://doi.org/10.1007/s00586-010-1586-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1586-4

Keywords

Navigation