Skip to main content

Advertisement

Log in

Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament™ SpineSupport) in vertebral compression fractures due to osteoporosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

A prospective, non-randomized multicenter study was initiated to study efficacy and safety of a partly resorbable composite of calcium sulphate and hydroxyapatite (Cerament™ SpineSupport), a novel, injectable bioceramic, in osteoporotic patients with vertebral compression fractures during 18-month follow-up. Fifteen patients with low-energy trauma and 1–2 vertebral compression fractures verified by magnetic resonance imaging were recruited to undergo percutaneous bioceramic vertebral augmentation under fluoroscopy. The patients were treated with a highly flowable bioceramic containing calcium sulphate, hydroxyapatite and the non-ionic radiocontrast agent iohexol, with final setting time within 1 h. After the procedure, the patients were allowed to mobilize after 2 h. Pain (VAS), occurrence of remote and adjacent fractures, and Quality of Life (QoL; SF-36 and EQ-5D) was recorded during 18 months. The injected volume of the composite material ranged from 2.8 to 9 mL (mean 4.2 mL). Pre-operative VAS score was mean 70.3 (CI95% ±8.7) with an immediate post-operative pain relief, which was maintained at the 4-week visit (mean 26.4 with CI95% ±16.1) and 8-week visit (mean 18.0 with CI95% ±13.5 pain relief). Eighty percent of the patients demonstrated a clinical improvement. The pain relief was maintained over 18 months and no adjacent fractures were observed. There was a statistically significant improvement of physical components in the QoL assessment. No extra-vertebral leakage or neurological deficits were reported in this series. This first prospective multicenter study on a partly resorbable bioceramic material indicate that fracture healing can be achieved with sustained pain relief over a follow-up period of 18 months in an osteoporotic patient population with vertebral compression fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abramo A et al (2010) Osteotomy of distal radius fracture malunion using a fast remodeling bone substitute consisting of calcium sulphate and calcium phosphate. J Biomed Mater Res B Appl Biomater 92(1):281–286

    PubMed  Google Scholar 

  2. Alvarez L et al (2006) Functional improvements in patients with osteoporotic compression fractures. Spine 31:1113–1118

    Article  PubMed  Google Scholar 

  3. Belkoff SM, Molloy S (2003) Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine 28(14):1555–1559

    Article  PubMed  Google Scholar 

  4. Berlemann U et al (2002) Adjacent vertebral failure after vertebroplasty. J Bone Joint Surg 84-B:748–752

    Article  Google Scholar 

  5. Brooks R et al (2003) The measurement and valuation of health status using EQ-5D: a European perspective evidence from the EuroQol BIO MED Research Programme

  6. Cooper C et al (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    CAS  PubMed  Google Scholar 

  7. Cooper C et al (1992) Incidence of clinically diagnosed vertebral fractures: a population based study in Rochester Minnesota, 1985–1989. J Bone Min Res 7:221–228

    Article  CAS  Google Scholar 

  8. Do HM et al (2005) Prospective analysis of clinical outcomes after percutaneous vertebroplasty for painful osteoporotic vertebral body fractures. Am J Neuroradiol 26:1623–1628

    PubMed  Google Scholar 

  9. Galibert P et al (1987) Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty [in French]. Neurochirurgie 33:166–168

    CAS  PubMed  Google Scholar 

  10. Grados F et al (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology 39:1410–1414

    Article  CAS  PubMed  Google Scholar 

  11. Hardouin P et al (2001) Should percutaneous vertebroplasty be used to treat osteoporotic fractures? An update. Joint Bone Spine 68(3):216–221

    Article  CAS  PubMed  Google Scholar 

  12. Heini PF (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fracture. Eur Spine J 9:445–450

    Article  CAS  PubMed  Google Scholar 

  13. Johnell O et al (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733

    Article  CAS  PubMed  Google Scholar 

  14. Kim SH et al (2004) Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol 45(4):440–445

    Article  CAS  PubMed  Google Scholar 

  15. Lane JI et al (2002) Intravertebral clefts opacified during vertebroplasty: pathogenesis, technical implications, and prognostic significance. Am J Neuroradiol 23:1642–1646

    PubMed  Google Scholar 

  16. Layton KF et al (2007) Vertebroplasty, first 1000 levels of a single center: evaluation of the outcomes and complications. Am J Neuroradiol 28:683–689

    CAS  PubMed  Google Scholar 

  17. Leidig et al (1990) A study of complaints and their relation to vertebral destruction in subjects with osteoporosis. Bone Miner 8:217–219

    Article  CAS  PubMed  Google Scholar 

  18. Lin EP et al (2004) Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol 25(2):175–180

    PubMed  Google Scholar 

  19. Mathis et al (eds) (2002) Percutaneous vertebroplasty. New York. ISBN 0-387-95306-X

  20. McGraw JK et al (2002) Prospective evaluation of pain relief in 100 patients undergoing percutaneous vertebroplasty: results and follow-up. J Vasc Interv Radiol 13:883–886

    Article  PubMed  Google Scholar 

  21. McKiernan F et al (2004) Quality of life following vertebroplasty. J Bone Joint Surg 86-A:2600–2606

    PubMed  Google Scholar 

  22. Melton LJ III (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Min Res 18(6):1139–1141

    Google Scholar 

  23. Nevitt MC et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    CAS  PubMed  Google Scholar 

  24. Nilsson M et al (2004) Biogradation and biocompatibility of a calcium sulphate-hydroxyapatite bone substitute. J Bone Joint Surg 86-B:120–125

    Google Scholar 

  25. Patel AA et al (2007) Neurologic deficit following percutaneous vertebral stabilization. Spine 32:1728–1734

    Article  PubMed  Google Scholar 

  26. Peltier LF (1961) The use of plaster of Paris to fill defects in bone. Clin Orthop 21:1–29

    CAS  PubMed  Google Scholar 

  27. Perez-Higueras et al (2002) Percutaneous vertebroplasty: long-term clinical and radiological outcome. Neuroradiology 44(11):950–954

  28. Pietrzak WS, Ronk R (2000) Calcium sulfate bone void filler: a review and a look ahead. J Craniofac Surg 11:327–333

    Article  CAS  PubMed  Google Scholar 

  29. Prather H (2006) Prospective measurement of function and pain in patients with non-neoplastic compression fractures treated with vertebroplasty. J Bone Joint Surg 88-A(2):334–341

    Article  Google Scholar 

  30. Ross PD et al (1991) Preexisting fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    CAS  PubMed  Google Scholar 

  31. Sistrom CL et al (1991) Extravasation of iopamidol and iohexol during contrast-enhanced CT: report of 28 cases. Radiology 180:707–710

    CAS  PubMed  Google Scholar 

  32. Tay BKB et al (1999) Calcium sulfate- and calcium phosphate-based bone substitutes—mimicry of the mineral phase of bone. Orthop Clin North Am 30:615–623

    Article  CAS  PubMed  Google Scholar 

  33. Trout AT et al (2005) Vertebroplasty in the inpatient population. Am J Neuroradiol 26:1629–1633

    PubMed  Google Scholar 

  34. Trout AT et al (2006) New fractures after vertebroplasty. Adjacent fractures occur significantly sooner. Am J Neuroradiol 27:217–223

    CAS  PubMed  Google Scholar 

  35. Uppin AA et al (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in subjects with osteoporosis. Radiology 226(1):119–124

    Article  PubMed  Google Scholar 

  36. Vogl TJ (2006) CT-guided percutaneous vertebroplasty in the therapy of vertebral compression fractures. Eur Radiol 16:797–803

    Article  CAS  PubMed  Google Scholar 

  37. Voormolen MHJ et al (2006) Pain response in the first trimester after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures with or without bone marrow edema. Am J Neuroradiol 27:1579–1585

    CAS  PubMed  Google Scholar 

  38. Wang JS et al (2006) Biomechanics and bone integration on injectable calcium sulphate and hydroxyapatite in large bone defect in rat. Abstract, American Orthopedic Research Society, Chicago, 18–22 March, 2006

  39. Ware JE et al (1993) SF-36® Health survey: manual & interpretation guide. QualityMetric Inc., Lincoln 2000

    Google Scholar 

  40. Wilcox RK (2004) The biomechanics of vertebroplasty: a review. Proc Inst Mech Eng [H] 218(1):1–10

    CAS  Google Scholar 

  41. Zoarski GH (2002) Percutaneous vertebroplasty for osteoporotic compression fractures: quantitative prospective evaluation of long-term outcomes. J Vasc Interv Radiol 13:139–148

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of this study by BoneSupport AB, Lund, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rauschmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauschmann, M., Vogl, T., Verheyden, A. et al. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament™ SpineSupport) in vertebral compression fractures due to osteoporosis. Eur Spine J 19, 887–892 (2010). https://doi.org/10.1007/s00586-010-1279-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1279-z

Keywords

Navigation