European Spine Journal

, Volume 21, Supplement 5, pp 592–598 | Cite as

Resect or not to resect: the role of posterior longitudinal ligament in lumbar total disc replacement

  • Balkan Cakir
  • Marcus Richter
  • Werner Schmoelz
  • René Schmidt
  • Heiko Reichel
  • Hans Joachim Wilke
Original Article

Abstract

With regard to the literature, several factors are considered to have an impact on postoperative mobility after lumbar total disc replacement (TDR). As TDR results in a distraction of the ligamentous structures, theoretically the postoperatively disc height and ligamentous integrity have also an influence on biomechanics of a treated segment. The purpose of the study was to evaluate the influence of posterior longitudinal ligament (PLL) resection and segmental distraction on range of motion (ROM). Six human, lumbar spines (L2–L3) were tested with pure moments of ±7.5 Nm in a spine loading apparatus. The ROM was determined in all three motion planes. Testing sequences included: (1) intact state, (2) 10 mm prosthesis (PLL intact), (3) 10 mm prosthesis (PLL resected), (4) 12 mm prosthesis (PLL resected). The prosthesis used was a prototype with a constrained design using the ball-and-socket principle. The implantation of the 10 mm prosthesis already increased the disc height significantly (intact: 9.9 mm; 10 mm prosthesis: 10.6 mm; 12 mm prosthesis: 12.7 mm). Compared to the intact status, the implantation of the 10 mm prosthesis resulted in an increase of ROM for flexion/extension (8.6° vs 10.8°; P = 0.245) and axial rotation (2.9° vs 4.5°; P = 0.028), whereas lateral bending decreased (9.0° vs 7.6°; P = 0.445). The resection of the PLL for the 10 mm prosthesis resulted in an increase of ROM in all motion planes compared to the 10 mm prosthesis with intact PLL (flexion/extension: 11.4°, P = 0.046; axial rotation: 5.1°, P = 0.046; lateral bending: 8.6°, P = 0.028). The subsequent implantation of a 12 mm prosthesis, with resected PLL, resulted in a significant decrease of ROM in all motion planes compared to the 10 mm prosthesis with intact PLL (flexion/extension: 8.4°, P = 0.028; axial rotation: 3.3°, P = 0.028; lateral bending: 5.1°, P = 0.028). Compared to the intact status, the 12 mm prosthesis with resected PLL only decreased lateral bending significantly while the 10 mm prosthesis with intact PLL increased axial rotation significantly. The resection of the PLL during TDR results in a significant increase of ROM in all three principle motion planes. But it still remains unclear if this increase which is in median not more than 1° may alter the clinical results. Moreover, the destabilizing effect of PLL resection can be reversed using a higher implant. The prosthesis height seems more crucial than PLL preservation to maintain the primary stability after TDR.

Keywords

Lumbar disc replacement Range of motion Posterior longitudinal ligament Biomechanics 

References

  1. 1.
    Bertagnoli R, Kumar S (2002) Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications. Eur Spine J 11:131–136Google Scholar
  2. 2.
    Cakir B, Schmidt R, Huch K, Puhl W, Richter M (2004) Sagittales Alignement und segmentale Beweglichkeit nach endoprothetischer Versorgung lumbaler Bewegungssegmente. Z Orthop Ihre Grenzgeb 142:159–165PubMedCrossRefGoogle Scholar
  3. 3.
    Dabbs VM, Dabbs LG (1990) Correlation between disc height narrowing and low-back pain. Spine 15:1366–1369PubMedCrossRefGoogle Scholar
  4. 4.
    David T (1993) Lumbar disc prosthesis. Surgical technique, indications and clinical results in 22 patients with a minimum of 12 months follow-up. Eur Spine J 1:254–259PubMedCrossRefGoogle Scholar
  5. 5.
    Delamarter RB, Fribourg DM, Kanim LEA, Bae H (2003) ProDisc artificial total lumbar disc replacement: introduction and early results from the united states clinical trial. Spine 28:167–175CrossRefGoogle Scholar
  6. 6.
    Hopf C, Heeckt H, Beske C (2002) Der Bandscheibenersatz mit der SB Charite-Bandscheibenendoprothese - Erfahrungen, Frühergebnisse und Feststellungen nach 35 prospektiv durchgeführten Operationen. Z Orthop Ihre Grenzgeb 140:485–491PubMedCrossRefGoogle Scholar
  7. 7.
    Huang RC, Girardi FP, Cammisa FP Jr, Lim MR, Tropiano P, Marnay T (2005) Correlation between range of motion and outcome after lumbar total disc replacement: 8.6-year follow-up. Spine 30:1407–1411PubMedCrossRefGoogle Scholar
  8. 8.
    Liu J, Ebraheim NA, Haman SP, Shafiq Q, Karkare N, Biyani A, Goel VK, Woldenberg L (2006) Effect of the increase in the height of lumbar disc space on facet joint articulation area in sagittal plane. Spine 31:E198–E202PubMedCrossRefGoogle Scholar
  9. 9.
    Mayer HM, Korge A (2002) Non-fusion technology in degenerative lumbar spinal disorders: facts, questions, challenges. Eur Spine J 11:85–91Google Scholar
  10. 10.
    Olsewski JM, Schendel MJ, Wallace LJ, Ogilvie JW, Gundra CR (1996) Magnetic resonance imaging and biological changes in injured intervertebral discs under normal and increased mechanical demands. Spine 21:1945–1951PubMedCrossRefGoogle Scholar
  11. 11.
    Panjabi M, Henderson G, Abjornson C, Yue J (2007) Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions. Spine 32:1311–1319PubMedCrossRefGoogle Scholar
  12. 12.
    Panjabi M, Malcolmson G, Teng E, Tominaga Y, Henderson G, Serhan H (2007) Hybrid testing of lumbar CHARITE discs versus fusions. Spine 32:959–966PubMedCrossRefGoogle Scholar
  13. 13.
    Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. J Bone Joint Surg Br 84:289–294PubMedCrossRefGoogle Scholar
  14. 14.
    Punt IM, Visser VM, van Rhijn LW, Kurtz SM, Antonis J, Schurink GWH, van Ooij A (2008) Complications and reoperations of the SB Charité lumbar disc prosthesis: experience in 75 patients. Eur Spine J 17:36–43PubMedCrossRefGoogle Scholar
  15. 15.
    Shim CS, Lee SH, Shin HD, Kang HS, Choi WC, Jung B, Choi G, Ahn Y, Lee S, Lee HY (2007) CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine 32:1012–1018PubMedCrossRefGoogle Scholar
  16. 16.
    Shono Y, Kaneda K, Abumi K, McAfee PC, Cunningham BW (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine 23:1550–1558PubMedCrossRefGoogle Scholar
  17. 17.
    Siepe CJ, Korge A, Grochulla F, Mehren C, Mayer HM (2008) Analysis of post-operative pain patterns following total lumbar disc replacement: results from fluoroscopically guided spine infiltrations. Eur Spine J 17:44–56PubMedCrossRefGoogle Scholar
  18. 18.
    Szpalski M, Gunzburg R, Mayer M (2002) Spine arthroplasty: a historical review. Eur Spine J 11(Suppl 2):65–84Google Scholar
  19. 19.
    Weißkopf M, Ohnsorge JAK, Martini F, Niethard FU, Birnbaum K (2008) Influence of inlay height on motion characteristics of lumbar segments in total disc replacement. Z Orthop Unfall 146:452–457PubMedCrossRefGoogle Scholar
  20. 20.
    White AA, Panjabi MM (1990) Clinical Biomechanics of the Spine, 2nd edn. J. B. Lippincott Co., PhiladelphiaGoogle Scholar
  21. 21.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants—recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Balkan Cakir
    • 1
  • Marcus Richter
    • 2
  • Werner Schmoelz
    • 3
  • René Schmidt
    • 4
  • Heiko Reichel
    • 1
  • Hans Joachim Wilke
    • 5
  1. 1.Department of Orthopaedic SurgeryUniversity of UlmUlmGermany
  2. 2.Spine UnitSt. Josefs HospitalWiesbadenGermany
  3. 3.Trauma Surgery and Sports MedicineMedical University of InnsbruckInnsbruckAustria
  4. 4.Department of Orthopaedic and Trauma SurgeryUniversity Medical Center MannheimMannheimGermany
  5. 5.Institute of Orthopaedic Research and BiomechanicsUniversity of UlmUlmGermany

Personalised recommendations