Skip to main content

Differentiation between deep and superficial fibers of the lumbar multifidus by magnetic resonance imaging

Abstract

The purpose of this study was to investigate the differentiation in muscle tissue characteristics and recruitment between the deep and superficial multifidus muscle by magnetic resonance imaging. The multifidus is a very complex muscle in which a superficial and deep component can be differentiated from an anatomical, biomechanical, histological and neuromotorial point of view. To date, the histological evidence is limited to low back pain patients undergoing surgery and cadavers. The multifidus muscles of 15 healthy subjects were investigated with muscle functional MRI. Images were taken under three different conditions: (1) rest, (2) activity without pain and (3) activity after experimentally induced low back muscle pain. The T2 relaxation time in rest and the shift in T2 relaxation time after activity were compared for the deep and superficial samples of the multifidus. At rest, the T2 relaxation time of the deep portion was significantly higher compared to the superficial portion. Following exercise, there was no significant difference in shift in T2 relaxation time between the deep and superficial portions, and in the pain or in the non-pain condition. In conclusion, this study demonstrates a higher T2 relaxation time in the deep portion, which supports the current assumption that the deep multifidus has a higher percentage of slow twitch fibers compared to the superficial multifidus. No differential recruitment has been found following trunk extension with and without pain induction. For further research, it would be interesting to investigate a clinical LBP population, using this non-invasive muscle functional MRI approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, De Cuyper HJ (2000) CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J 9:266–272

    Article  CAS  PubMed  Google Scholar 

  2. Hides JA, Richardson CA, Jull GA (1996) Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine 21:2763–2769

    Article  CAS  PubMed  Google Scholar 

  3. Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 19:165–172

    Article  CAS  PubMed  Google Scholar 

  4. Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31:2926–2933

    Article  PubMed  Google Scholar 

  5. Hodges PW, Moseley GL (2003) Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol 13:361–370

    Article  PubMed  Google Scholar 

  6. Hides JA, Jull GA, Richardson CA (2001) Long-term effects of specific stabilizing exercises for first-episode low back pain. Spine 26:E243–E248

    Article  CAS  PubMed  Google Scholar 

  7. Whittaker J (2007) Ultrasound imaging for rehabilitation of the lumbopelvic region. A clinical approach. Churchill Livingstone, Edinburghl, pp 66–77

    Google Scholar 

  8. Macdonald DA, Lorimer Moseley G, Hodges PW (2006) The lumbar multifidus: does the evidence support clinical beliefs? Man Ther 11:254–263

    Article  PubMed  Google Scholar 

  9. Richardson CA, Hodges PW, Hides JA (2004) Therapeutic exercise for lumbopelvic stabilization. A motor control approach for the treatment and prevention of low back pain. Churchill Livingstone, Edinburgh

    Google Scholar 

  10. Macintosh JE, Bogduk N, Munro RR (1986) The morphology of the human lumbar multifidus. Clin Biomech 1:196–204

    Article  Google Scholar 

  11. Bogduk N, Macintosh JE, Pearcy MJ (1992) A universal model of the lumbar back muscles in the upright position. Spine 17:897–913

    Article  CAS  PubMed  Google Scholar 

  12. Sirca A, Kostevc V (1985) The fibre-type composition of thoracic and lumbar paravertebral muscles in man. J Anat 141:131–137

    CAS  PubMed  Google Scholar 

  13. Moseley GL, Hodges PW, Gandevia SC (2002) Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 27:E29–36

    Article  PubMed  Google Scholar 

  14. Jemmett RS, Macdonald DA, Agur AM (2004) Anatomical relationships between selected segmental muscles of the lumbar spine in the context of multi-planar segmental motion: a preliminary investigation. Man Ther 9:203–210

    Article  CAS  PubMed  Google Scholar 

  15. Danneels LA (2007) Clinical anatomy of the lumbar multifidus. In: Vleeming A, Mooney V, Stoeckart R (eds) Movement, stability and lumbopelvic pain integration of research and therapy. Elsevier, Churchill Livingstone, pp 85–94

    Chapter  Google Scholar 

  16. Kay A (2000) An extensive literature review of the lumbar multifidus: anatomy. J Man Manip Ther 8:102–114

    Google Scholar 

  17. Henneman E, Olson CB (1965) Relations between structure and function in the design of skeletal muscles. J Neurophysiol 28:581–598

    CAS  PubMed  Google Scholar 

  18. Segal RL (2007) Use of imaging to assess normal and adaptive muscle function. Phys Ther 87:704–718. doi:ptj.20060169[pii]10.2522/ptj.20060169

    PubMed  Google Scholar 

  19. Adzamli IK, Jolesz FA, Bleier AR, Mulkern RV, Sandor T (1989) The effect of gadolinium DTPA on tissue water compartments in slow- and fast-twitch rabbit muscles. Magn Reson Med 11:172–181

    Article  CAS  PubMed  Google Scholar 

  20. English AE, Joy ML, Henkelman RM (1991) Pulsed NMR relaxometry of striated muscle fibers. Magn Reson Med 21:264–281

    Article  CAS  PubMed  Google Scholar 

  21. Polak JF, Jolesz FA, Adams DF (1988) NMR of skeletal muscle. Differences in relaxation parameters related to extracellular/intracellular fluid spaces. Invest Radiol 23:107–112

    Article  CAS  PubMed  Google Scholar 

  22. Moseley GL, Hodges PW, Gandevia SC (2003) External perturbation of the trunk in standing humans differentially activates components of the medial back muscles. J Physiol 547:581–587. doi:10.1113/jphysiol.2002.0249502002.024950[pii]

    Article  CAS  PubMed  Google Scholar 

  23. Macdonald D, Moseley GL, Hodges PW (2009) Why do some patients keep hurting their back? Evidence of ongoing back muscle dysfunction during remission from recurrent back pain. Pain. doi:S0304-3959(08)00721-5[pii]10.1016/j.pain.2008.12.002

    PubMed  Google Scholar 

  24. Hodges PW, Moseley GL, Gabrielsson A, Gandevia SC (2003) Experimental muscle pain changes feedforward postural responses of the trunk muscles. Exp Brain Res 151:262–271

    Article  PubMed  Google Scholar 

  25. Patten C, Meyer RA, Fleckenstein JL (2003) T2 mapping of muscle. Semin Musculoskelet Radiol 7:297–305

    Article  PubMed  Google Scholar 

  26. Meyer RA, Prior BM (2000) Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev 28:89–92

    CAS  PubMed  Google Scholar 

  27. Kinugasa R, Akima H (2005) Neuromuscular activation of triceps surae using muscle functional MRI and EMG. Med Sci Sports Exerc 37:593–598. doi:00005768-200504000-00010[pii]

    Article  PubMed  Google Scholar 

  28. Conley MS, Meyer RA, Bloomberg JJ, Feeback DL, Dudley GA (1995) Noninvasive analysis of human neck muscle function. Spine 20:2505–2512

    Article  CAS  PubMed  Google Scholar 

  29. Cagnie B, Dickx N, Peeters I, Tuytens J, Achten E, Cambier D, Danneels L (2008) The use of functional MRI to evaluate cervical flexor activity during different cervical flexion exercises. J Appl Physiol 104:230–235. doi:00918.2007[pii]10.1152/japplphysiol.00918.2007

    Article  PubMed  Google Scholar 

  30. Mayer JM, Graves JE, Clark BC, Formikell M, Ploutz-Snyder LL (2005) The use of magnetic resonance imaging to evaluate lumbar muscle activity during trunk extension exercise at varying intensities. Spine 30:2556–2563

    Article  PubMed  Google Scholar 

  31. Dickx N, Cagnie B, Achten E, Vandemaele P, Parlevliet T, Danneels L (2008) Changes in lumbar muscle activity because of induced muscle pain evaluated by muscle functional magnetic resonance imaging. Spine 33:E983–E989. doi:10.1097/BRS.0b013e31818917d000007632-200812150-00021[pii]

    Article  PubMed  Google Scholar 

  32. Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    CAS  PubMed  Google Scholar 

  33. Kinugasa R, Kawakami Y, Fukunaga T (2006) Quantitative assessment of skeletal muscle activation using muscle functional MRI. Magn Reson Imaging 24:639–644

    Article  PubMed  Google Scholar 

  34. Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, Bourgois J, Dankaerts W, De Cuyper HJ (2001) Effects of three different training modalities on the cross-sectional area of the lumbar multifidus muscle in patients with chronic low back pain. Br J Sports Med 35:186–191

    Article  CAS  PubMed  Google Scholar 

  35. Pollock ML, Leggett SH, Graves JE, Jones A, Fulton M, Cirulli J (1989) Effect of resistance training on lumbar extension strength. Am J Sports Med 17:624–629

    Article  CAS  PubMed  Google Scholar 

  36. Rantanen J, Hurme M, Falck B, Alaranta H, Nykvist F, Lehto M, Einola S, Kalimo H (1993) The lumbar multifidus muscle five years after surgery for a lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 18:568–574

    CAS  Google Scholar 

  37. Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  38. Appell HJ (1990) Muscular atrophy following immobilisation. A review. Sports Med 10:42–58

    Article  CAS  PubMed  Google Scholar 

  39. Price TB, Kamen G, Damon BM, Knight CA, Applegate B, Gore JC, Eward K, Signorile JF (2003) Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion. Magn Reson Imaging 21:853–861. doi:S0730725X03001838[pii]

    Article  PubMed  Google Scholar 

  40. Adams GR, Duvoisin MR, Dudley GA (1992) Magnetic resonance imaging and electromyography as indexes of muscle function. J Appl Physiol 73:1578–1583

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the BOF-Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele Dickx.

Additional information

This research was supported by the BOF-Ghent University.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dickx, N., Cagnie, B., Achten, E. et al. Differentiation between deep and superficial fibers of the lumbar multifidus by magnetic resonance imaging. Eur Spine J 19, 122–128 (2010). https://doi.org/10.1007/s00586-009-1171-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1171-x

Keywords

  • Multifidus muscle
  • Deep and superficial multifidus
  • Muscle functional magnetic resonance imaging
  • Muscle fiber type