Skip to main content
Log in

Does the sagittal alignment of the cervical spine have an impact on disk degeneration? Minimum 10-year follow-up of asymptomatic volunteers

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

There have been few studies that investigated and clarified the relationships between progression of degenerative changes and sagittal alignment of the cervical spine. The objective of the study was to longitudinally evaluate the relationships among progression of degenerative changes of the cervical spine with age, the development of clinical symptoms and sagittal alignment of the cervical spine in healthy subjects. Out of 497 symptom-free volunteers who underwent MRI and plain radiography of the cervical spine between 1994 and 1996, 113 subjects (45 males and 68 females) who responded to our contacts were enrolled. All subjects underwent another MRI at an average of 11.3 years after the initial study. Their mean age at the time of the initial imaging was 36.6 ± 14.5 years (11–65 years). The items evaluated on MRI were (1) decrease in signal intensity of the intervertebral disks, (2) posterior disk protrusion, and (3) disk space narrowing. Each item was evaluated using a numerical grading system. The subjects were divided into four groups according to the age and sagittal alignment of the cervical spine, i.e., subjects under or over the age of 40 years, and subjects with the lordosis or non-lordosis type of sagittal alignment of the cervical spine. During the 10-year period, progression of decrease in signal intensity of the disk, posterior disk protrusion, and disk space narrowing were recognized in 64.6, 65.5, and 28.3% of the subjects, respectively. Progression of posterior disk protrusion was significantly more frequent in subjects over 40 years of age with non-lordosis type of sagittal alignment. Logistic regression analysis revealed that stiff shoulder was closely correlated with females (P = 0.001), and that numbness of the upper extremity was closely correlated with age (P = 0.030) and male (P = 0.038). However, no significant correlation between the sagittal alignment of the cervical spine and clinical symptoms was detected. Sagittal alignment of the cervical spine had some impact on the progression of degenerative changes of the cervical spine with aging; however, it had no correlation with the occurrence of future clinical symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boden SD, McCowin PR, Davis DO et al (1990) Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72:1178–1184

    CAS  PubMed  Google Scholar 

  2. Bovim G, Schrader H, Sand T (1994) Neck pain in the general population. Spine 19:1307–1309

    Article  CAS  PubMed  Google Scholar 

  3. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    CAS  PubMed  Google Scholar 

  4. Chiba K, Ogawa Y, Ishii K et al (2006) Long-term results of expansive open-door laminoplasty for cervical myelopathy—average 14-year follow-up study. Spine 31:2998–3005

    Article  PubMed  Google Scholar 

  5. Clark CR, Benzel EC, Currier BL et al (2005) The cervical spine, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 941–956

    Google Scholar 

  6. Echarri JJ, Forriol F (2005) Influence of the type of load on the cervical spine: a study on Congolese bearers. Spine J 5:291–296

    Article  PubMed  Google Scholar 

  7. Edwards CC 2nd, Riew KD, Anderson PA et al (2003) Cervical myelopathy: current diagnostic and treatment strategies. Spine J 3:68–81

    Article  PubMed  Google Scholar 

  8. Friedenburg ZB, Miller WT (1959) Degenerative disc disease of cervical spine. J Bone Joint Surg Am 41:61

    Google Scholar 

  9. Gay RE (1993) The curve of the cervical spine: variations and significance. J Manipulative Physiol Ther 16:591–594

    CAS  PubMed  Google Scholar 

  10. Gore DR (2001) Roentgengraphic findings in the cervical spine in asymptomatic persons: a ten-year follow-up. Spine 26:2463–2466

    Article  CAS  PubMed  Google Scholar 

  11. Grob D, Frauenfelder H, Mannion AF (2007) The association between cervical spine curvature and neck pain. Eur Spine J 16:669–678

    Article  CAS  PubMed  Google Scholar 

  12. Gruber HE, Leslie K, Norton HJ et al (2006) Demographic factors that influence human disc cell proliferation in vitro. Spine J 6:120–124

    Article  PubMed  Google Scholar 

  13. Harrison DD, Harrison DE, Janik TJ et al (2004) Modeling of the sagittal cervical spine as a method to discriminate hypolordosis: results of elliptical and circular modeling in 72 asymptomatic subjects, 52 acute neck pain subjects, and 70 chronic neck pain subjects. Spine 29:2485–2492

    Article  PubMed  Google Scholar 

  14. Harrison DE, Jones EW, Janik TJ et al (2002) Evaluation of axial and flexural stresses in the vertebral body cortex and trabecular bone in lordosis and two sagittal cervical translation configurations with an elliptical shell model. J Manipulative Physiol Ther 25:391–401

    Article  PubMed  Google Scholar 

  15. Hirabayashi K, Toyama Y, Chiba K (1999) Expansive laminoplasty for myelopathy in ossification of the longitudinal ligament. Clin Orthop Relat Res 359:35–48

    Article  PubMed  Google Scholar 

  16. Iizuka H, Nakajima T, Iizuka Y et al (2007) Cervical malalignment after laminoplasty: relationship to deep extensor musculature of the cervical spine and neurological outcome. J Neurosurg Spine 7:610–614

    Article  PubMed  Google Scholar 

  17. Jacobs B, Ghelman B, Marchisello P (1990) Coexistence of cervical and lumbar disc disease. Spine 15:1261–1264

    Article  CAS  PubMed  Google Scholar 

  18. Jagannathan J, Shaffrey CI, Oskouian RJ et al (2008) Radiographic and clinical outcomes following single-level anterior cervical discectomy and allograft fusion without plate placement or cervical collar. J Neurosurg Spine 8:420–428

    Article  PubMed  Google Scholar 

  19. Jumah KB, Name PK (1994) Relationship between load carrying on the head and cervical spondylosis in Ghanaians. West Far J Med 13:181–182

    CAS  Google Scholar 

  20. Leone A, Sandarac M, Crease A et al (2001) Destructive spondyloarthropathy of the cervical spine in long-term hemodialyzed patients: a five-year clinical radiological prospective study. Skeletal Radiol 30:431–441

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto M, Fujimura Y, Suzuki N et al (1998) Cervical curvature in acute whiplash injuries: prospective comparative study with asymptomatic subjects. Injury 29:775–778

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto M, Fujimura Y, Suzuki N et al (1998) MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br 80:19–24

    Article  CAS  PubMed  Google Scholar 

  23. Nojiri K, Matsumoto M, Chiba K et al (2003) Relationship between alignment of upper and lower cervical spine in asymptomatic individuals. J Neurosurg 99:80–83

    PubMed  Google Scholar 

  24. Suda K, Abumi K, Ito M et al (2003) Local kyphosis reduces surgical outcomes of expansive open-door laminoplasty for cervical spondylotic myelopathy. Spine 28:1258–1262

    Article  PubMed  Google Scholar 

  25. Sudo H, Ito M, Abumi K et al (2006) Long-term follow up of surgical outcomes in patients with cervical disorders undergoing hemodialysis. J Neurosurg Spine 5:313–319

    Article  PubMed  Google Scholar 

  26. Suk KS, Kim KT, Lee JH et al (2007) Sagittal alignment of the cervical spine after the laminoplasty. Spine 32:656–660

    Article  Google Scholar 

  27. Van Driessche S, Goutallier D, Odent T et al (2006) Surgical treatment of destructive cervical spondyloarthropathy with neurologic impairment in hemodialysis patients. Spine 31:705–711

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the General Insurance Association of Japan. We express our cordial thanks to Dr. Tomoo Inoue of Yamanashi Hospital of Social Insurance, Dr. Yoshiji Suzuki of the Omaezaki Municipal Hospital, and Mr. Toshio Watanabe at the Central Radiotechnology Department of Keio University Hospital, for their cooperation for this study.

Conflict of interest statement

Morio Matsumoto has consultant fee from Medtronic Japan and Kyoei Fire & Marine Insurance and has received honorarium from the General Insurance Association of Japan for workshop. Kazuhiro Chiba has received honorarium from the General Insurance Association of Japan for workshop. The other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morio Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, E., Matsumoto, M., Ichihara, D. et al. Does the sagittal alignment of the cervical spine have an impact on disk degeneration? Minimum 10-year follow-up of asymptomatic volunteers. Eur Spine J 18, 1644–1651 (2009). https://doi.org/10.1007/s00586-009-1095-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1095-5

Keywords

Navigation