Skip to main content

Advertisement

Log in

The effect of pulsed jet lavage in vertebroplasty on injection forces of PMMA bone cement: an animal study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Percutaneous vertebroplasty, comprising of the injection of polymethylmethacrylate (PMMA) into vertebral bodies, is an efficient procedure to stabilize osteoporotic compression fractures as well as other weakening lesions. Besides fat embolism, cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the PMMA during injection plays a key role in this context. It was shown in vitro that the best way to lower the risk of cement leakage is to inject the cement at higher viscosity, which is requires high injection forces. Injection forces can be reduced by applying a newly developed lavage technique as it was shown in vitro using human cadaver vertebrae. The purpose of this study was to prove the in vitro results in an in vivo model. The investigation was incorporated in an animal study that was performed to evaluate the cardiovascular reaction on cement augmentation using the lavage technique. Injection forces were measured with instrumentation for 1 cc syringes, additionally acquiring plunger displacement. Averaged injection forces measured, ranged from 12 to 130 N and from 28 to 140 N for the lavage group and the control group, respectively. Normalized injection forces (by viscosity and injection speed) showed a trend to be lower for the lavage group in comparison to the control group (P = 0.073). In conclusion, the clinical relevance on the investigated lavage technique concerning lowering injection forces was only shown by trend in the performed animal study. However, it might well be that the effect is more pronounced for osteoporotic vertebral bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aebli N, Krebs J, Davis G, Walton M, Williams MJ, Theis JC (2002) Fat embolism and acute hypotension during vertebroplasty: an experimental study in sheep. Spine 27:460–466. doi:10.1097/00007632-200203010-00005

    Article  PubMed  Google Scholar 

  2. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670. doi:10.1210/en.139.2.663

    Article  CAS  PubMed  Google Scholar 

  3. Baroud G, Bohner M, Heini P, Steffen T (2004) Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 14:487–504

    CAS  PubMed  Google Scholar 

  4. Baroud G, Crookshank M, Bohner M (2006) High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine 31:2562–2568. doi:10.1097/01.brs.0000240695.58651.62

    Article  PubMed  Google Scholar 

  5. Baroud G, Vant C, Giannitsios D, Bohner M, Steffen T (2005) Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty. Spine 30:68–74

    PubMed  Google Scholar 

  6. Belkoff SM, Maroney M, Fenton DC, Mathis JM (1999) An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 25:23S–26S. doi:10.1016/S8756-3282(99)00128-3

    Article  CAS  PubMed  Google Scholar 

  7. Benneker LM, Heini PF, Suhm N, Gisep A (2008) The effect of pulsed jet lavage in vertebroplasty on injection forces of polymethylmethacrylate bone cement, material distribution, and potential fat embolism: a cadaver study. Spine 33:E906–E910. doi:10.1097/BRS.0b013e318183bb6d

    Article  PubMed  Google Scholar 

  8. Berlemann U, Franz T, Orler R, Heini PF (2004) Kyphoplasty for treatment of osteoporotic vertebral fractures: a prospective non-randomized study. Eur Spine J 13:496–501. doi:10.1007/s00586-004-0691-7

    Article  PubMed  Google Scholar 

  9. Boger A, Wheeler KD, Schenk B, Heini PF (2006) Clinical investigations of PMMA cement viscosity during vertebroplasty. 53rd ORS, Poster 1610

  10. Boger A, Heini P, Windolf M, Schneider E (2007) Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Eur Spine J 16:2118–2125. doi:10.1007/s00586-007-0473-0

    Article  PubMed  Google Scholar 

  11. Bohner M, Gasser B, Baroud G, Heini P (2003) Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials 24:2721–2730. doi:10.1016/S0142-9612(03)00086-3

    Article  CAS  PubMed  Google Scholar 

  12. Cotterill PC, Kostuik JP, D’Angelo G, Fernie GR, Maki BE (1986) An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res 4:298–303. doi:10.1002/jor.1100040306

    Article  CAS  PubMed  Google Scholar 

  13. Egermann M, Goldhahn J, Holz R, Schneider E, Lill CA (2008) A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare. Lab Anim 42:453–464. doi:10.1258/la.2007.007001

    Article  CAS  PubMed  Google Scholar 

  14. Fribourg D, Tang C, Sra P, Delamarter R, Bae H (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29:2270–2276. doi:10.1097/01.brs.0000142469.41565.2a

    Article  PubMed  Google Scholar 

  15. Gisep A, Benneker LM, Boger A, Boner V, Leskosek B, Heini PF, Krebs J (2009) Cardiovascular changes during PMMA vertebroplasty in sheep—the effect of pulsed jet lavage. 55th ORS, Poster1828

  16. Heini PF (2005) The current treatment—a survey of osteoporotic fracture treatment. Osteoporotic spine fractures: the spine surgeon’s perspective. Osteoporos Int 16(Suppl 2):S85–S92. doi:10.1007/s00198-004-1723-1

    Article  PubMed  Google Scholar 

  17. Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones—a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10:164–171. doi:10.1007/s005860000204

    Article  CAS  PubMed  Google Scholar 

  18. Heini PF, Orler R (2004) Vertebroplasty in severe osteoporosis. Technique and experience with multi-segment injection. Orthopade 33:22–30. doi:10.1007/s00132-003-0574-3

    Article  CAS  PubMed  Google Scholar 

  19. Heini PF, Walchli B, Berlemann U (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9:445–450. doi:10.1007/s005860000182

    Article  CAS  PubMed  Google Scholar 

  20. Higgins KB, Harten RD, Langrana NA, Reiter MF (2003) Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine 28:1540–1547. doi:10.1097/00007632-200307150-00012

    Article  PubMed  Google Scholar 

  21. Hulme PA, Krebs J, Ferguson SJ, Berlemann U (2006) Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine 31:1983–2001. doi:10.1097/01.brs.0000229254.89952.6b

    Article  PubMed  Google Scholar 

  22. Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE (1997) Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 18:1897–1904

    CAS  PubMed  Google Scholar 

  23. Kayanja MM, Togawa D, Lieberman IH (2005) Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine. Spine J 5:55–63. doi:10.1016/j.spinee.2004.08.005

    Article  PubMed  Google Scholar 

  24. Lad SP, Patil CG, Lad EM, Hayden MG, Boakye M (2008) National trends in vertebral augmentation procedures for the treatment of vertebral compression fractures. Surg Neurol 71:580–584

    Article  PubMed  Google Scholar 

  25. Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26:1547–1554. doi:10.1097/00007632-200107150-00009

    Article  CAS  PubMed  Google Scholar 

  26. Lin EP, Ekholm S, Hiwatashi A, Westesson PL (2004) Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol 25:175–180

    PubMed  Google Scholar 

  27. Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28:991–996. doi:10.1097/00007632-200305150-00006

    Article  PubMed  Google Scholar 

  28. Sun K, Liebschner MA (2004) Biomechanics of prophylactic vertebral reinforcement. Spine 29:1428–1435. doi:10.1097/01.BRS.0000128760.94173.90

    Article  PubMed  Google Scholar 

  29. Wilke HJ, Kettler A, Wenger KH, Claes LE (1997) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247:542–555. doi:10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Boner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boger, A., Benneker, L.M., Krebs, J. et al. The effect of pulsed jet lavage in vertebroplasty on injection forces of PMMA bone cement: an animal study. Eur Spine J 18, 1957–1962 (2009). https://doi.org/10.1007/s00586-009-1079-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1079-5

Keywords

Navigation