Skip to main content
Log in

Anterior cervical fusion with a bio-resorbable composite cage (beta TCP–PLLA): clinical and radiological results from a prospective study on 20 patients

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

A resorbable composite material (40% PLLA and 60% beta TCP) with a high breaking strength and capacity to withstand plastic and elastic strain has been developed for cervical interbody fusion. This is a prospective study to evaluate clinical and radiological results of 20 patients implanted with 27 cages (mean follow-up, 27 months). Clinical (neck disability index, VAS, neurological evaluation) and radiological (anteroposterior, lateral, bending X-rays) data were assessed before and after surgery. At the end of the study, CT scan was performed to evaluate fusion, resorption of the cage and density of the new tissue substituting the cage. The mean patient age was 50.3 years (range, 18–79 years). The average improvement was 55% for neck pain, 83% for arm pain and 65% for NDI, with 85% good or excellent results at final outcomes. Radiologically, lordosis was significantly improved (mean gain of 5.4° and 3.7° for overall and segmental lordosis, respectively). This correction was conserved in 95% of cases. Fusion was obtained in 96% (CT evaluation). Resorption was started in all cases and completed in an average of 36 months after surgery. The mean density of tissue substituting the cage was 659 UH with a range, of 455–911 UH (compatible with bone nature). Over time, the amount of bony tissue increased and the graft remodelled with an increase in density value. This demonstrates a biological activity and changing bone mineral content of this tissue. The new composite cage under investigation provides long-term fusion without loss of correction or inflammatory reaction. The ceramic block guarantees the maintenance of the disc height and its slow resorption allows long-term fusion and stability with good and reliable clinical and radiological outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aunoble S, Clément D, Frayssinet P, Harmand MF, Le Huec JC (2006) Biological performance of a new beta-TCP/PLLA composite material for applications in spine surgery: in vitro and in vivo studies. J Biomed Mater Res A 78(2):416–422. doi:10.1002/jbm.a.30749

    PubMed  Google Scholar 

  2. Bartels RH, Donk R, van Azn RD (2001) Height of cervical foramina after anterior discectomy and implantation of a carbon fiber cage. J Neurosurg 95(1)(Suppl):40–42

    Google Scholar 

  3. Bergsma JE, de Bruijn WC, Rozema FR, Bos RR, Boering G (1995) Late degradation tissue response to poly(l-lactide) bone plates and screws. Biomaterials 16(1):25–31. doi:10.1016/0142-9612(95)91092-D

    Article  PubMed  CAS  Google Scholar 

  4. Bishop RC, Moore KA, Hadley MN (1996) Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg 85:206–210

    Article  PubMed  CAS  Google Scholar 

  5. Bonnevialle P, Abid A, Mansat P, Verhaeghe L, Clement D, Mansat M (2002) Tibial valgus osteotomy using a tricalcium phosphate medial wedge: a minimally invasive technique. Rev Chir Orthop Repar Appar Mot 88(5):486–492 (in French)

    Google Scholar 

  6. Bos RR, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HW (1991) Degradation of and tissue reaction to biodegradable poly(l-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials 12(1):32–36. doi:10.1016/0142-9612(91)90128-W

    Article  PubMed  CAS  Google Scholar 

  7. Carreon LY, Glassman SD, Djurasovic M (2007) Reliability and agreement between fine-cut CT scans and plain radiography in the evaluation of posterolateral fusions. Spine J 7:39–43. doi:10.1016/j.spinee.2006.04.005

    Article  PubMed  Google Scholar 

  8. Cauthen JC, Kinard RE, Vogler JB, Jackson DE, DePaz OB, Hunter OL et al (1998) Outcome analysis of noninstrumented anterior cervical discectomy and interbody fusion in 348 patients. Spine 23:188–192. doi:10.1097/00007632-199801150-00008

    Article  PubMed  CAS  Google Scholar 

  9. Cho DY, Lee WY, Sheu PC, Chen CC (2005) Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol 63:497–504. doi:10.1016/j.surneu.2004.10.016

    Article  PubMed  Google Scholar 

  10. Cloward RB (2007) The anterior approach for removal of ruptured cervical disks. 1958. J Neurosurg Spine 6(5):496–511. doi:10.3171/spi.2007.6.5.496

  11. Connolly PJ, Esses SI, Kostuik JP (1996) Anterior cervical fusion: outcome analysis of patients fused with and without anterior cervical plates. J Spinal Disord 9:202–206

    PubMed  CAS  Google Scholar 

  12. Côté P, Cassidy JD, Yong-Hing K, Sibley J, Loewy J (1997) Apophysial joint degeneration, disc degeneration, and sagittal curve of the cervical spine. Can they be measured reliably on radiographs? Spine 22(8):859–864. doi:10.1097/00007632-199704150-00007

    Article  PubMed  Google Scholar 

  13. Dai LY, Jiang LS (2008) Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up. Eur Spine J 17(5):698–705. doi:10.1007/s00586-008-0643-8

    Article  PubMed  Google Scholar 

  14. Fielding WJ (1992) Complications of anterior cervical disc removal and fusion. Clin Orthop Relat Res 284:10–13

    PubMed  Google Scholar 

  15. Fuchs M, Köster G, Krause T, Merten HA, Schmid A (1998) Degradation of and intraosseous reactions to biodegradable poly-l-lactide screws: a study in minipigs. Arch Orthop Trauma Surg 118(3):140–144. doi:10.1007/s004020050334

    Article  PubMed  CAS  Google Scholar 

  16. Galois L, Mainard D, Cohen P, Pfeffer F, Traversari R, Delagoutte JP (2000) Filling of bone defects with tricalcium phosphate beta in traumatology. Ann Chir 125(10):972–981. doi:10.1016/S0003-3944(00)00406-5 (in French)

    Google Scholar 

  17. Galois L, Mainard D, Delagoutte JP (2002) Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 26(2):109–115. doi:10.1007/s00264-001-0329-x

    Article  PubMed  CAS  Google Scholar 

  18. Hacker RJ, Cauthen JC, Gilbert TJ, Griffith SL (2000) A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 25:2646–2655. doi:10.1097/00007632-200010150-00017

    Article  PubMed  CAS  Google Scholar 

  19. Kaiser MG, Haid RW Jr, Subach BR, Barnes B, Rodts GE Jr (2002) Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft. Neurosurgery 50:229–238. doi:10.1097/00006123-200202000-00001

    Article  PubMed  Google Scholar 

  20. Le Huec JC, Lesprit E, Delavigne C, Clement D, Chauveaux D, Le Rebeller A (1997) Tri-calcium phosphate ceramics and allografts as bone substitutes for spinal fusion in idiopathic scoliosis as bone substitutes for spinal fusion in idiopathic scoliosis: comparative clinical results at four years. Acta Orthop Belg 63(3):202–211

    PubMed  CAS  Google Scholar 

  21. Matge G (1998) Anterior interbody fusion with the BAK-cage in cervical spondylosis. Acta Neurochir (Wien) 140:1–8. doi:10.1007/s007010050049

    Article  CAS  Google Scholar 

  22. Päivärinta U, Böstman O, Majola A, Toivonen T, Törmälä P, Rokkanen P (1993) Intraosseous cellular response to biodegradable fracture fixation screws made of polyglycolide or polylactide. Arch Orthop Trauma Surg 112(2):71–74. doi:10.1007/BF00420258

    Article  PubMed  Google Scholar 

  23. Peltoniemi HH, Hallikainen D, Toivonen T, Helevirta P, Waris T (1999) SR-PLLA and SR-PGA miniscrews: biodegradation and tissue reactions in the calvarium and dura mater. J Craniomaxillofac Surg 27(1):42–50. doi:10.1016/S1010-5182(99)80009-2

    PubMed  CAS  Google Scholar 

  24. Samartzis D, Shen FH, Lyon C, Phillips M, Goldberg EJ, An HS (2004) Does rigid instrumentation increase the fusion rate in one-level anterior cervical discectomy and fusion? Spine J 4:636–643. doi:10.1016/j.spinee.2004.04.010

    Article  PubMed  Google Scholar 

  25. Santos ER, Goss DG, Morcom RK, Fraser RD (2003) Radiologic assessment of interbody fusion using carbon fiber cages. Spine 28:997–1001. doi:10.1097/00007632-200305150-00007

    Article  PubMed  Google Scholar 

  26. Sasso R, Le Huec JC, Shaffrey C (2005) Iliac crest graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech 18(Suppl):S77–S81. doi:10.1097/01.bsd.0000112045.36255.83

    Article  PubMed  Google Scholar 

  27. Schakenraad JM, Hardonk MJ, Feijen J, Molenaar I, Nieuwenhuis P (1990) Enzymatic activity toward poly(l-lactic acid) implants. J Biomed Mater Res 24(5):529–545. doi:10.1002/jbm.820240502

    Article  PubMed  CAS  Google Scholar 

  28. Shah RR, Mohammed S, Saifuddin A, Taylor BA (2003) Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation. Eur Spine J 12:378–385. doi:10.1007/s00586-002-0517-4

    Article  PubMed  Google Scholar 

  29. Smith GW, Robinson RA (1958) The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Jt Surg Am 40-A(3):607–624

    Google Scholar 

  30. Spruit M, Meijers H, Obradov M, Anderson PG (2004) CT density measurement of bone graft within an intervertebral lumbar cage: increase of Hounsfield units as an indicator for increasing bone mineral content. J Spinal Disord Tech 17(3):232–235. doi:10.1097/00024720-200406000-00011

    Article  PubMed  CAS  Google Scholar 

  31. Van der Elst M, Klein CP, de Blieck-Hogervorst JM, Patka P, Haarman HJ (1999) Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials 20(2):121–128. doi:10.1016/S0142-9612(98)00117-3

    Article  PubMed  Google Scholar 

  32. Vernon H, Mior S (1991) The neck disability index: a study of reliability and validity. J Manip Physiol Ther 14(7):409–415

    CAS  Google Scholar 

  33. Wang JC, McDonough PW, Endow KK, Delamarter RB (2000) Increased fusion rates with cervical plating for two-level anterior cervical discectomy and fusion. Spine 25:41–45. doi:10.1097/00007632-200001010-00009

    Article  PubMed  CAS  Google Scholar 

  34. Wang T, Dang G, Guo Z, Yang M (2005) Evaluation of autologous bone marrow mesenchymal stem cell–calcium phosphate ceramic composite for lumbar fusion in rhesus monkey interbody fusion model. Tissue Eng 11:1159–1167. doi:10.1089/ten.2005.11.1159

    Article  PubMed  CAS  Google Scholar 

  35. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3:192–195. doi:10.1097/00005131-198909000-00002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Le Huec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debusscher, F., Aunoble, S., Alsawad, Y. et al. Anterior cervical fusion with a bio-resorbable composite cage (beta TCP–PLLA): clinical and radiological results from a prospective study on 20 patients. Eur Spine J 18, 1314–1320 (2009). https://doi.org/10.1007/s00586-009-1062-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1062-1

Keywords

Navigation