Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment


In advanced stages of degenerative disease of the lumbar spine instrumented spondylodesis is still the golden standard treatment. However, in recent years dynamic stabilisation devices are being implanted to treat the segmental instability due to iatrogenic decompression or segmental degeneration. The purpose of the present study was to investigate the stabilising effect of a classical pedicle screw/rod combination, with a moveable hinge joint connection between the screw and rod allowing one degree of freedom (cosmicMIA). Six human lumbar spines (L2–5) were loaded in a spine tester with pure moments of ±7.5 Nm in lateral bending, flexion/extension and axial rotation. The range of motion (ROM) and the neutral zone were determined for the following states: (1) intact, (2) monosegmental dynamic instrumentation (L4-5), (3) bisegmental dynamic instrumentation (L3–5), (4) bisegmental decompression (L3–5), (5) bisegmental dynamic instrumentation (L3–5) and (6) bisegmental rigid instrumentation (L3–5). Compared to the intact, with monosegmental instrumentation (2) the ROM of the treated segment was reduced to 47, 40 and 77% in lateral bending, flexion/extension and axial rotation, respectively. Bisegmental dynamic instrumentation (3) further reduced the ROM in L4-5 compared to monosegmental instrumentation to 25% (lateral bending), 28% (flexion/extension) and 57% (axial rotation). Bisegmental surgical decompression (4) caused an increase in ROM in both segments (L3–4 and L4–5) to approximately 125% and approximately 135% and 187–234% in lateral bending, flexion/extension and axial rotation, respectively. Compared to the intact state, bisegmental dynamic instrumentation after surgical decompression reduced the ROM of the two-bridged segments to 29–35% in lateral bending and 33–38% in flexion/extension. In axial rotation, the ROM was in the range of the intact specimen (87–117%). A rigid instrumentation (6) further reduced the ROM of the two-bridged segments to 20–30, 23–27 and 50–68% in lateral bending, flexion/extension and axial rotation, respectively. The results of the present study showed that compared to the intact specimen the investigated hinged dynamic stabilisation device reduced the ROM after bisegmental decompression in lateral bending and flexion/extension. Following bisegmental decompression and the thereby caused large rotational instability the device is capable of restoring the motion in axial rotation back to values in the range of the intact motion segments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Adams MA, Hutton WC (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6:241–248. doi:10.1097/00007632-198105000-00006

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bothmann M, Kast E, Boldt GJ, Oberle J (2008) Dynesys fixation for lumbar spine degeneration. Neurosurg Rev 31:189–196. doi:10.1007/s10143-007-0101-9

    PubMed  Article  Google Scholar 

  3. 3.

    Cheng BC, Gordon J, Cheng J, Welch WC (2007) Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine 32:2551–2557. doi:10.1097/BRS.0b013e318158cdbe

    PubMed  Article  Google Scholar 

  4. 4.

    Cripton PA, Jain GM, Wittenberg RH, Nolte LP (2000) Load-sharing characteristics of stabilized lumbar spine segments. Spine 25:170–179. doi:10.1097/00007632-200001150-00006

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Disch AC, Schaser KD, Melcher I, Luzzati A, Feraboli F, Schmoelz W (2008) En bloc spondylectomy reconstructions in a biomechanical in-vitro study. Eur Spine J 17:715–725. doi:10.1007/s00586-008-0588-y

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Disch AC, Schmoelz W, Matziolis G, Schneider SV, Knop C, Putzier M (2008) Higher risk of adjacent segment degeneration after floating fusions: long-term outcome after low lumbar spine fusions. J Spinal Disord Tech 21:79–85. doi:10.1097/BSD.0b013e3180577259

    PubMed  Article  Google Scholar 

  7. 7.

    Fuchs PD, Lindsey DP, Hsu KY, Zucherman JF, Yerby SA (2005) The use of an interspinous implant in conjunction with a graded facetectomy procedure. Spine 30:1266–1272. doi:10.1097/01.brs.0000164152.32734.d2 discussion 1273–1274

    PubMed  Article  Google Scholar 

  8. 8.

    Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044. doi:10.1097/00007632-200012010-00011

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86A:1497–1503

    Google Scholar 

  10. 10.

    Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109. doi:10.2106/JBJS.E.01363

    PubMed  Article  Google Scholar 

  11. 11.

    Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331. doi:10.1097/01.brs.0000152584.46266.25

    PubMed  Article  Google Scholar 

  12. 12.

    Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S–194S. doi:10.1016/j.spinee.2004.07.007

    PubMed  Article  Google Scholar 

  13. 13.

    Kettler A, Drumm J, Heuer F, Haeussler K, Mack C, Claes L, Wilke HJ (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech (Bristol, Avon) 23:242–247. doi:10.1016/j.clinbiomech.2007.09.004

    Article  CAS  Google Scholar 

  14. 14.

    Khoueir P, Kim KA, Wang MY (2007) Classification of posterior dynamic stabilization devices. Neurosurg Focus 22:E3. doi:10.3171/foc.2007.22.1.3

    PubMed  Article  Google Scholar 

  15. 15.

    Kim SM, Lim TJ, Paterno J, Kim DH (2004) A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion. J Neurosurg Spine 1:101–107

    PubMed  Article  Google Scholar 

  16. 16.

    Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9:472–485. doi:10.1007/s005860000185

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Meyers K, Tauber M, Sudin Y, Fleischer S, Arnin U, Girardi F, Wright T (2008) Use of instrumented pedicle screws to evaluate load sharing in posterior dynamic stabilization systems. Spine J 8:926–932. doi:10.1016/j.spinee.2007.08.008

    PubMed  Article  Google Scholar 

  18. 18.

    Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922. doi:10.1007/s00586-005-0948-9

    PubMed  Article  Google Scholar 

  19. 19.

    Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13:1129–1134

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Panjabi MM, Henderson G, James Y, Timm JP (2007) StabilimaxNZ® versus simulated fusion: evaluation of adjacent-level effects. Eur Spine J 16:2159–2165. doi:10.1007/s00586-007-0444-5

    PubMed  Article  Google Scholar 

  21. 21.

    Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300. doi:10.1002/jor.1100030305

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 76:413–424

    PubMed  CAS  Google Scholar 

  23. 23.

    Phillips FM, Voronov LI, Gaitanis IN, Carandang G, Havey RM, Patwardhan AG (2006) Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. Spine J 6:714–722. doi:10.1016/j.spinee.2006.02.003

    PubMed  Article  Google Scholar 

  24. 24.

    Quint U, Wilke HJ, Loer F, Claes L (1998) Laminectomy and functional impairment of the lumbar spine: the importance of muscle forces in flexible and rigid instrumented stabilization—a biomechanical study in vitro. Eur Spine J 7:229–238. doi:10.1007/s005860050062

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    PubMed  CAS  Google Scholar 

  26. 26.

    Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17:1057–1065. doi:10.1007/s00586-008-0667-0

    PubMed  Article  Google Scholar 

  27. 27.

    Scifert JL, Sairyo K, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Chesmel KD (1999) Stability analysis of an enhanced load sharing posterior fixation device and its equivalent conventional device in a calf spine model. Spine 24:2206–2213. doi:10.1097/00007632-199911010-00006

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed  Google Scholar 

  29. 29.

    Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056

    PubMed  Article  Google Scholar 

  30. 30.

    Wilke HJ, Heuer F, Schmidt H (2008) Design optimization of a new posterior dynamic stabilization system. J Biomech 41(Suppl 1):S313. doi:10.1016/S0021-9290(08)70312-9

    Article  Google Scholar 

  31. 31.

    Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19. doi:10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Wilke HJ, Schmidt H, Werner K, Schmolz W, Drumm J (2006) Biomechanical evaluation of a new total posterior-element replacement system. Spine 31:2790–2796. doi:10.1097/01.brs.0000245872.45554.c0 discussion 2797

    PubMed  Article  Google Scholar 

  33. 33.

    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154. doi:10.1007/s005860050045

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Zander T, Rohlmann A, Klockner C, Bergmann G (2003) Influence of graded facetectomy and laminectomy on spinal biomechanics. Eur Spine J 12:427–434. doi:10.1007/s00586-003-0540-0

    PubMed  Article  CAS  Google Scholar 

Download references


The work was supported by corporate funds (Ulrich Medical, Ulm, Germany).

Author information



Corresponding author

Correspondence to Werner Schmoelz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmoelz, W., Onder, U., Martin, A. et al. Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment. Eur Spine J 18, 1478–1485 (2009).

Download citation


  • Dynamic stabilisation
  • Biomechanics
  • Lumbar spine
  • Decompression