Skip to main content
Log in

Posterior instrumented fusion without neural decompression for incomplete neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Previous reports have emphasized the importance of neural decompression through either an anterior or posterior approach when reconstruction surgery is performed for neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine. However, the contribution of these decompression procedures to neurological recovery has not been fully established. In the present study, we investigated 14 consecutive patients who had incomplete neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine and underwent posterior instrumented fusion without neural decompression. They were radiographically and neurologically assessed during an average follow-up period of 25 months. The mean local kyphosis angle was 14.6° at flexion and 4.1° at extension preoperatively, indicating marked instability at the collapsed vertebrae. The mean spinal canal occupation by bone fragments was 21%. After surgery, solid bony fusion was obtained in all patients. The mean local kyphosis angle became 5.8° immediately after surgery and 9.9° at the final follow-up. There was no implant dislodgement, and no additional surgery was required. In all patients, back pain was relieved, and neurological improvement was obtained by at least one modified Frankel grade. The present series demonstrate that the posterior instrumented fusion without neural decompression for incomplete neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine can provide neurological improvement and relief of back pain without major complications. We suggest that neural decompression is not essential for the treatment of neurological impairment due to osteoporotic vertebral collapse with dynamic mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arciero RA, Leung KYK, Pierce JH (1989) Spontaneous unstable burst fracture of the thoracolumbar spine in osteoporosis. Spine 14:114–117. doi:10.1097/00007632-198901000-00024

    Article  PubMed  CAS  Google Scholar 

  2. Ataka H, Tanno T, Nemoto T et al (2004) Delayed neurologic deficit resulting from instability after osteoporotic vertebral fracture in the thoracolumbar spine: report of two cases. Rinsho Seikei Geka 39:851–856. Clinical Orthopaedic Surgery

    Google Scholar 

  3. Bradford DS, McBride GG (1987) Surgical management of thoracolumbar spine fractures with incomplete neurologic deficits. Clin Orthop Relat Res 218:201–216

    PubMed  Google Scholar 

  4. Chang KW, Chen YY, Lin CC et al (2005) Apical lordosating osteotomy and minimal segment fixation for the treatment of thoracic or thoracolumbar osteoporotic kyphosis. Spine 30:1674–1681. doi:10.1097/01.brs.0000170450.77554.bc

    Article  PubMed  Google Scholar 

  5. Dai LY (2001) Remodeling of the spinal canal after thoracolumbar burst fractures. Clin Orthop Relat Res 382:119–123. doi:10.1097/00003086-200101000-00018

    Article  PubMed  Google Scholar 

  6. Fidler NW (1988) Remodeling of the spinal canal after burst fracture. J Bone Joint Surg Br 70:730–732

    PubMed  CAS  Google Scholar 

  7. Kaneda K, Asano S, Hashimoto T et al (1992) The treatment of osteoporotic posttraumatic vertebral collapse using the Kaneda device and a bioactive ceramic vertebral prosthesis. Spine 17:S295–S303. doi:10.1097/00007632-199208001-00015

    Article  PubMed  CAS  Google Scholar 

  8. Kim KT, Suk KS, Kim JM et al (2003) Delayed vertebral collapse with neurological deficits secondary to osteoporosis. Int Orthop 27:65–69

    PubMed  Google Scholar 

  9. Kim YJ, Lenke LG, Bridwell KH et al (2007) Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: incidence and risk factor analysis of 410 cases. Spine 32:2731–2738. doi:10.1097/BRS.0b013e318074c3ce

    Article  PubMed  Google Scholar 

  10. Malcom BW, Bradford DS, Winter RB et al (1981) Post-traumatic kyphosis: a review of forty-eight surgically treated patients. J Bone Joint Surg Am 63:891–899

    Google Scholar 

  11. Mamada T, Iijima T (2005) Conservative treatment for paraplegia resulting from vertebral fractures in senile osteoporosis. Seikei Geka 56:1367–1371. Orthop Surg

    Google Scholar 

  12. McAfee PC, Bohlman HH, Yuan HA (1985) Anterior decompression of traumatic thoracolumbar fractures with incomplete neurological deficit using a retroperitoneal approach. J Bone Joint Surg Am 67:89–104

    PubMed  CAS  Google Scholar 

  13. Mochida J, Toh E, Chiba M et al (2001) Treatment of osteoporotic late collapse of a vertebral body of thoracic and lumbar spine. J Spinal Disord 14:393–398. doi:10.1097/00002517-200110000-00004

    Article  PubMed  CAS  Google Scholar 

  14. Saita K, Hoshino Y, Kikkawa I et al (2000) Posterior spinal shortening for paraplegia after vertebral collapse caused by osteoporosis. Spine 25:2832–2835

    Article  PubMed  CAS  Google Scholar 

  15. Shikata J, Yamamuro T, Iida H et al (1990) Surgical treatment for paraplegia resulting from vertebral fractures in senile osteoporosis. Spine 15:485–489. doi:10.1097/00007632-199006000-00010

    Article  PubMed  CAS  Google Scholar 

  16. Suk SI, Kim JH, Lee JH et al (2003) Anterior-posterior surgery versus posterior closing wedge osteotomy in posttraumatic kyphosis with neurologic compromised osteoporotic fracture. Spine 28:2170–2175. doi:10.1097/01.BRS.0000090889.45158.5A

    Article  PubMed  Google Scholar 

  17. Sutherland CJ, Miller F, Wang GJ (1983) Early progressive kyphosis following compression fractures: two case reports from a series of “stable” thoracolumbar compression fractures. Clin Orthop Relat Res 173:216–220

    PubMed  Google Scholar 

  18. Tanaka S, Kubota M, Fujimoto Y et al (1993) Conus medullaris syndrome secondary to an L1 burst fracture in osteoporosis. Spine 18:2131–2134. doi:10.1097/00007632-199310001-00034

    Article  PubMed  CAS  Google Scholar 

  19. Uchida K, Kobayashi S, Nakajima H et al (2006) Anterior expandable strut cage replacement for osteoporotic thoracolumbar vertebral collapse. J Neurosurg Spine 4:454–462. doi:10.3171/spi.2006.4.6.454

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ataka, H., Tanno, T. & Yamazaki, M. Posterior instrumented fusion without neural decompression for incomplete neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine. Eur Spine J 18, 69–76 (2009). https://doi.org/10.1007/s00586-008-0821-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0821-8

Keywords

Navigation