Skip to main content

Advertisement

Log in

Validation of the sheep as a large animal model for the study of vertebral osteoporosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Rats have long been the animal of choice for research in the field of osteoporosis. In the search for a complementary large animal model the sheep appears useful but hitherto the extent of bone loss from the spine has failed to reach a level that is generally accepted as osteoporotic in humans. Osteoporosis was induced in ten sheep using ovariectomy, low calcium diet and steroid injection for 6 months. Bone samples of iliac crest (IC), lumbar spine (LS), and proximal femur (PF) from the osteoporotic sheep were compared with those from four normal sheep using densitometry, histomorphometry, biochemistry and basic mechanical testing. The differences were examined using an analysis of variance with Tukey–Kramer test. Overall, the bone mineral density at LS and PF decreased more than 25% after treatment. Trabecular bone volume decreased by 29.2, 33.4 and 42.6% in IC, LS and PF, respectively. The failure load of the LS in axial compression was reduced to 2,003 from 6,140 N. The extent of bone loss was sufficient to categorise these sheep as osteoporotic although the pattern of bone loss varied between sites. Reduced mechanical competence in LS confirmed the suitability of this model for evaluation of potential treatments for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res 260–271

  2. Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11:1356–1363

    PubMed  CAS  Google Scholar 

  3. Black DM, Cummings SR, Genant HK et al (1992) Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 7:633–638

    PubMed  CAS  Google Scholar 

  4. Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 966:73–81

    Article  PubMed  CAS  Google Scholar 

  5. Chailurkit LO, Ongphiphadhanakul B, Piaseu N et al (2001) Biochemical markers of bone turnover and response of bone mineral density to intervention in early postmenopausal women: an experience in a clinical laboratory. Clin Chem 47:1083–1088

    PubMed  CAS  Google Scholar 

  6. Chappard D, Legrand E, Basle MF et al (1996) Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res 11:676–685

    PubMed  CAS  Google Scholar 

  7. Chavassieux P, Buffet A, Vergnaud P et al (1997) Short-term effects of corticosteroids on trabecular bone remodeling in old ewes. Bone 20:451–455. doi:10.1016/S8756-3282(97)00016-1

    Article  PubMed  CAS  Google Scholar 

  8. Chavassieux P, Garnero P, Duboeuf F et al (2001) Effects of a new selective estrogen receptor modulator (MDL 103, 323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res 16:89–96. doi:10.1359/jbmr.2001.16.1.89

    Article  PubMed  CAS  Google Scholar 

  9. Chavassieux P, Pastoureau P, Boivin G et al (1991) Dose effects on ewe bone remodeling of short-term sodium fluoride administration—a histomorphometric and biochemical study. Bone 12:421–427. doi:10.1016/8756-3282(91)90031-D

    Article  PubMed  CAS  Google Scholar 

  10. Chavassieux P, Pastoureau P, Chapuy MC et al (1993) Glucocorticoid-induced inhibition of osteoblastic bone formation in ewes: a biochemical and histomorphometric study. Osteoporos Int 3:97–102. doi:10.1007/BF01623380

    Article  PubMed  CAS  Google Scholar 

  11. Erben RG (1996) Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec 246:39–46. doi :10.1002/(SICI)1097-0185(199609)246:1<39::AID-AR5>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  12. FDA Division of Metabolism and Endocrine Drug Products (1994) Food and Drug Administration Guidelines for preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis, Washington, DC

  13. Goldhahn J, Jenet A, Schneider E et al (2005) Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in ovariectomized sheep. J Orthop Trauma 19:23–28. doi:10.1097/00005131-200501000-00005

    Article  PubMed  Google Scholar 

  14. Goldhahn J, Neuhoff D, Schaeren S et al (2006) Osseointegration of hollow cylinder based spinal implants in normal and osteoporotic vertebrae: a sheep study. Arch Orthop Trauma Surg 126:554–561. doi:10.1007/s00402-006-0185-7

    Article  PubMed  CAS  Google Scholar 

  15. Greenspan SL, Maitland-Ramsey L, Myers E (1996) Classification of osteoporosis in the elderly is dependent on site-specific analysis. Calcif Tissue Int 58:409–414. doi:10.1007/BF02509439

    Article  PubMed  CAS  Google Scholar 

  16. Hornby SB, Ford SL, Mase CA et al (1995) Skeletal changes in the ovariectomised ewe and subsequent response to treatment with 17 beta oestradiol. Bone 17:389S–394S

    PubMed  CAS  Google Scholar 

  17. Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20:55–61. doi:10.1016/S8756-3282(96)00317-1

    Article  PubMed  CAS  Google Scholar 

  18. Lill CA, Fluegel AK, Schneider E (2002) Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporos Int 13:480–486. doi:10.1007/s001980200058

    Article  PubMed  CAS  Google Scholar 

  19. Lill CA, Fluegel AK, Schneider E (2000) Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. J Orthop Trauma 14:559–565 discussion 565-6

    Article  PubMed  CAS  Google Scholar 

  20. Lill CA, Gerlach UV, Eckhardt C et al (2002) Bone changes due to glucocorticoid application in an ovariectomized animal model for fracture treatment in osteoporosis. Osteoporos Int 13:407–414. doi:10.1007/s001980200047

    Article  PubMed  CAS  Google Scholar 

  21. MacLeay JM, Olson JD, Enns RM et al (2004) Dietary-induced metabolic acidosis decreases bone mineral density in mature ovariectomized ewes. Calcif Tissue Int 75:431–437. doi:10.1007/s00223-004-0217-7

    Article  PubMed  CAS  Google Scholar 

  22. Manolagas SC, Weinstein RS (1999) New developments in the pathogenesis and treatment of steroid-induced osteoporosis. J Bone Miner Res 14:1061–1066. doi:10.1359/jbmr.1999.14.7.1061

    Article  PubMed  CAS  Google Scholar 

  23. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35:170–189. doi:10.1007/s10439-006-9239-9

    Article  PubMed  CAS  Google Scholar 

  24. Melton LJ III, Chrischilles EA, Cooper C et al (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7:1005–1010

    Article  PubMed  Google Scholar 

  25. Mitton D, Rumelhart C, Hans D et al (1997) The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys 19:464–474. doi:10.1016/S1350-4533(97)00001-5

    Article  PubMed  CAS  Google Scholar 

  26. Nakamuta H, Nitta T, Hoshino T et al (1996) Glucocorticoid-induced osteopenia in rats: histomorphometrical and microarchitectural characterization and calcitonin effect. Biol Pharm Bull 19:217–219

    PubMed  CAS  Google Scholar 

  27. Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S–284S

    PubMed  CAS  Google Scholar 

  28. Newton BI, Cooper RC, Gilbert JA et al (2004) The ovariectomized sheep as a model for human bone loss. J Comp Pathol 130:323–326. doi:10.1016/j.jcpa.2003.12.007

    Article  PubMed  CAS  Google Scholar 

  29. O’Connell SL (1999) The sheep as an experimental model for osteoporosis. Department of Medicine. The University of Melbourne, Melbourne

    Google Scholar 

  30. Ortoft G, Oxlund H (1996) Qualitative alterations of cortical bone in female rats after long-term administration of growth hormone and glucocorticoid. Bone 18:581–590. doi:10.1016/8756-3282(96)00077-4

    Article  PubMed  CAS  Google Scholar 

  31. Parkinson IH, Fazzalari NL (1994) Cancellous bone structure analysis using image analysis. Australas Phys Eng Sci Med 17:64–70

    PubMed  CAS  Google Scholar 

  32. Phillips FM, Turner AS, Seim HB III et al (2006) In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. Spine J 6:500–506. doi:10.1016/j.spinee.2006.01.014

    Article  PubMed  Google Scholar 

  33. Schorlemmer S, Gohl C, Iwabu S et al (2003) Glucocorticoid treatment of ovariectomized sheep affects mineral density, structure, and mechanical properties of cancellous bone. J Bone Miner Res 18:2010–2015. doi:10.1359/jbmr.2003.18.11.2010

    Article  PubMed  CAS  Google Scholar 

  34. Schorlemmer S, Ignatius A, Claes L et al (2005) Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone 37:491–496. doi:10.1016/j.bone.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  35. Spector TD, McCloskey EV, Doyle DV et al (1993) Prevalence of vertebral fracture in women and the relationship with bone density and symptoms: the Chingford Study. J Bone Miner Res 8:817–822

    PubMed  CAS  Google Scholar 

  36. Sundstol F, Owen E (1984) Straw and other fibrous by-products as feed. Elsevier, Amsterdam

  37. Thompson DD, Simmons HA, Pirie CM et al (1995) FDA Guidelines and animal models for osteoporosis. Bone 17:125S–133S. doi:10.1016/8756-3282(95)97353-H

    Article  PubMed  CAS  Google Scholar 

  38. Tsugeno H, Fujita T, Goto B et al (2002) Vertebral fracture and cortical bone changes in corticosteroid-induced osteoporosis. Osteoporos Int 13:650–656. doi:10.1007/s001980200088

    Article  PubMed  CAS  Google Scholar 

  39. Tsugeno H, Goto B, Fujita T et al (2001) Oral glucocorticoid-induced fall in cortical bone volume and density in postmenopausal asthmatic patients. Osteoporos Int 12:266–270. doi:10.1007/s001980170115

    Article  PubMed  CAS  Google Scholar 

  40. Turner AS (2001) Animal models of osteoporosis—necessity and limitations. Eur Cell Mater 1:66–81

    PubMed  CAS  Google Scholar 

  41. Turner AS (2002) The sheep as a model for osteoporosis in humans. Vet J 163:232–239. doi:10.1053/tvjl.2001.0642

    Article  PubMed  CAS  Google Scholar 

  42. Turner AS, Alvis M, Myers W et al (1995) Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes. Bone 17:395S–402S. doi:10.1016/8756-3282(95)00148-7

    Article  PubMed  CAS  Google Scholar 

  43. van Gieson I (1889) Laboratory notes of technical methods for the nervous system. Med J 50:57

    Google Scholar 

  44. Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22:2365–2374. doi:10.1097/00007632-199710150-00009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Ian Parkinson for assistance in statistical analysis; Mr Adnan Mulaibrahimovic for the ash weight analyses; the staff of the Veterinary Services Division, IMVS for animal husbandry; Ms Olga Theodorakakos for assistance with bone histomorphometry and Dr Nick Burgan for advice and assistance with mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Zarrinkalam.

Additional information

The contribution of the second author “H. Beard” in this paper was as equal to the contribution of the first author “M. R. Zarrinkalam”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrinkalam, M.R., Beard, H., Schultz, C.G. et al. Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur Spine J 18, 244–253 (2009). https://doi.org/10.1007/s00586-008-0813-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0813-8

Keywords

Navigation