Skip to main content
Log in

Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The prevalence of “vertebral endplate signal changes” (VESC) and its association with low back pain (LBP) varies greatly between studies. This wide range in reported prevalence rates and associations with LBP could be explained by differences in the definitions of VESC, LBP, or study sample. The objectives of this systematic critical review were to investigate the current literature in relation to the prevalence of VESC (including Modic changes) and the association with non-specific low back pain (LBP). The MEDLINE, EMBASE, and SveMED databases were searched for the period 1984 to November 2007. Included were the articles that reported the prevalence of VESC in non-LBP, general, working, and clinical populations. Included were also articles that investigated the association between VESC and LBP. Articles on specific LBP conditions were excluded. A checklist including items related to the research questions and overall quality of the articles was used for data collection and quality assessment. The reported prevalence rates were studied in relation to mean age, gender, study sample, year of publication, country of study, and quality score. To estimate the association between VESC and LBP, 2 × 2 tables were created to calculate the exact odds ratio (OR) with 95% confidence intervals. Eighty-two study samples from 77 original articles were identified and included in the analysis. The median of the reported prevalence rates for any type of VESC was 43% in patients with non-specific LBP and/or sciatica and 6% in non-clinical populations. The prevalence was positively associated with age and was negatively associated with the overall quality of the studies. A positive association between VESC and non-specific LBP was found in seven of ten studies from the general, working, and clinical populations with ORs from 2.0 to 19.9. This systematic review shows that VESC is a common MRI-finding in patients with non-specific LBP and is associated with pain. However, it should be noted that VESC may be present in individuals without LBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J et al (2006) Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J 15(Suppl 2):S192–S300

    Article  PubMed  Google Scholar 

  2. Albert HB, Kjaer P, Jensen TS, Sorensen JS et al (2008) Modic changes, possible causes and relation to low back pain. Med Hypotheses 70:361–368. doi:10.1016/j.mehy.2007.05.014

    Article  PubMed  CAS  Google Scholar 

  3. Albert HB, Manniche C (2007) Modic changes following lumbar disc herniation. Eur Spine J 16:977–982. doi:10.1007/s00586-007-0336-8

    Article  PubMed  Google Scholar 

  4. An HS, Vaccaro AR, Dolinskas CA, Cotler JM et al (1991) Differentiation between spinal tumors and infections with magnetic resonance imaging. Spine 16:S334–S338. doi:10.1097/00007632-199110001-00019

    Article  PubMed  CAS  Google Scholar 

  5. Annunen S, Paassilta P, Lohiniva J, Perala M et al (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412. doi:10.1126/science.285.5426.409

    Article  PubMed  CAS  Google Scholar 

  6. Appel H, Loddenkemper C, Grozdanovic Z, Ebhardt H et al (2006) Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis. Arthritis Res Ther 8:R143. doi:10.1186/ar2035

    Article  PubMed  CAS  Google Scholar 

  7. Asazuma T, Nobuta M, Sato M, Yamagishi M et al (2003) Lumbar disc herniation associated with separation of the posterior ring apophysis: analysis of five surgical cases and review of the literature. Acta Neurochir (Wien) 145:461–466

    CAS  Google Scholar 

  8. Assheuer J, Lenz G, Lenz W, Gottschlich KW et al (1987) Fat/water separation in the NMR tomogram. The imaging of bone marrow reactions in degenerative intervertebral disk changes. Rofo 147:58–63

    PubMed  CAS  Google Scholar 

  9. Aunoble S, Hoste D, Donkersloot P, Liquois F et al (2006) Video-assisted ALIF with cage and anterior plate fixation for L5–S1 spondylolisthesis. J Spinal Disord Tech 19:471–476. doi:10.1097/01.bsd.0000211249.82823.d9

    Article  PubMed  Google Scholar 

  10. Baraliakos X, Brandt J, Listing J, Haibel H et al (2005) Outcome of patients with active ankylosing spondylitis after two years of therapy with etanercept: clinical and magnetic resonance imaging data. Arthritis Rheum 53:856–863. doi:10.1002/art.21588

    Article  PubMed  CAS  Google Scholar 

  11. Baraliakos X, Davis J, Tsuji W, Braun J (2005) Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis before and after therapy with the tumor necrosis factor alpha receptor fusion protein etanercept. Arthritis Rheum 52:1216–1223. doi:10.1002/art.20977

    Article  PubMed  CAS  Google Scholar 

  12. Baraliakos X, Landewe R, Hermann KG, Listing J et al (2005) Inflammation in ankylosing spondylitis: a systematic description of the extent and frequency of acute spinal changes using magnetic resonance imaging. Ann Rheum Dis 64:730–734. doi:10.1136/ard.2004.029298

    Article  PubMed  CAS  Google Scholar 

  13. Baranto A, Hellstrom M, Nyman R, Lundin O et al (2006) Back pain and degenerative abnormalities in the spine of young elite divers: a 5-year follow-up magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc 14:907–914. doi:10.1007/s00167-005-0032-3

    Article  PubMed  Google Scholar 

  14. Battie MC, Haynor DR, Fisher LD, Gill K et al (1995) Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins. J Bone Joint Surg Am 77:1662–1670

    PubMed  CAS  Google Scholar 

  15. Battie MC, Videman T, Parent E (2004) Lumbar disc degeneration: epidemiology and genetic influences. Spine 29:2679–2690. doi:10.1097/01.brs.0000146457.83240.eb

    Article  PubMed  Google Scholar 

  16. Becker GT, Willburger RE, Liphofer J, Koester O et al (2006) Distribution of MRI signal alterations of the cartilage endplate in pre-operated patients with special focus on recurrent lumbar disc herniation. Rofo 178:46–54

    PubMed  CAS  Google Scholar 

  17. Bennett DL, Nassar L, DeLano MC (2006) Lumbar spine MRI in the elite-level female gymnast with low back pain. Skeletal Radiol 35:503–509. doi:10.1007/s00256-006-0083-7

    Article  PubMed  Google Scholar 

  18. Braithwaite I, White J, Saifuddin A, Renton P et al (1998) Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at lumbar discography. Eur Spine J 7:363–368. doi:10.1007/s005860050091

    Article  PubMed  CAS  Google Scholar 

  19. Bram J, Zanetti M, Min K, Hodler J (1998) MR abnormalities of the intervertebral disks and adjacent bone marrow as predictors of segmental instability of the lumbar spine. Acta Radiol 39:18–23

    PubMed  CAS  Google Scholar 

  20. Braun J, Baraliakos X, Golder W, Brandt J et al (2003) Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum 48:1126–1136. doi:10.1002/art.10883

    Article  PubMed  CAS  Google Scholar 

  21. Brown MF, Hukkanen MV, McCarthy ID, Redfern DR et al (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br 79:147–153. doi:10.1302/0301-620X.79B1.6814

    Article  PubMed  CAS  Google Scholar 

  22. Buttermann GR (2004) The effect of spinal steroid injections for degenerative disc disease. Spine J 4:495–505. doi:10.1016/j.spinee.2004.03.024

    Article  PubMed  Google Scholar 

  23. Buttermann GR, Heithoff KB, Ogilvie JW, Transfeldt EE et al (1997) Vertebral body MRI related to lumbar fusion results. Eur Spine J 6:115–120. doi:10.1007/BF01358743

    Article  PubMed  CAS  Google Scholar 

  24. Buttermann GR, Mullin WJ (2008) Pain and disability correlated with disc degeneration via magnetic resonance imaging in scoliosis patients. Eur Spine J 17:240–249. doi:10.1007/s00586-007-0530-8

    Article  PubMed  Google Scholar 

  25. Carragee E, Alamin T, Cheng I, Franklin T et al (2006) Are first-time episodes of serious LBP associated with new MRI findings? Spine J 6:624–635. doi:10.1016/j.spinee.2006.03.005

    Article  PubMed  Google Scholar 

  26. Carragee EJ, Alamin TF, Miller JL, Carragee JM (2005) Discographic, MRI and psychosocial determinants of low back pain disability and remission: a prospective study in subjects with benign persistent back pain. Spine J 5:24–35. doi:10.1016/j.spinee.2004.05.250

    Article  PubMed  Google Scholar 

  27. Carrino JA, Swathwood TC, Morrison WB, Glover JM (2007) Prospective evaluation of contrast-enhanced MR imaging after uncomplicated lumbar discography. Skeletal Radiol 36:293–299. doi:10.1007/s00256-006-0221-2

    Article  PubMed  Google Scholar 

  28. Castro WH, Halm H, Jerosch J, Steinbeck J et al (1994) Long-term changes in the magnetic resonance image after chemonucleolysis. Eur Spine J 3:222–224. doi:10.1007/BF02221597

    Article  PubMed  CAS  Google Scholar 

  29. Champsaur P, Parlier-Cuau C, Juhan V, Daumen-Legre V et al (2000) Differential diagnosis of infective spondylodiscitis and erosive degenerative disk disease. J Radiol 81:516–522

    PubMed  CAS  Google Scholar 

  30. Chataigner H, Onimus M, Polette A (1998) Surgery for degenerative lumbar disc disease. Should the black disc be grafted? Rev Chir Orthop Reparatrice Appar 84:583–589

    CAS  Google Scholar 

  31. Chung CB, Vande Berg BC, Tavernier T, Cotten A et al (2004) End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. Skeletal Radiol 33:399–404. doi:10.1007/s00256-004-0780-z

    Article  PubMed  Google Scholar 

  32. Collins CD, Stack JP, O’Connell DJ, Walsh M et al (1990) The role of discography in lumbar disc disease: a comparative study of magnetic resonance imaging and discography. Clin Radiol 42:252–257. doi:10.1016/S0009-9260(05)82113-0

    Article  PubMed  CAS  Google Scholar 

  33. Cvitanic OA, Schimandle J, Casper GD, Tirman PF (2000) Subchondral marrow changes after laser diskectomy in the lumbar spine: MR imaging findings and clinical correlation. AJR Am J Roentgenol 174:1363–1369

    PubMed  CAS  Google Scholar 

  34. Dagirmanjian A, Schils J, McHenry M, Modic MT (1996) MR imaging of vertebral osteomyelitis revisited. AJR Am J Roentgenol 167:1539–1543

    PubMed  CAS  Google Scholar 

  35. Danchaivijitr N, Temram S, Thepmongkhol K, Chiewvit P (2007) Diagnostic accuracy of MR imaging in tuberculous spondylitis. J Med Assoc Thai 90:1581–1589

    PubMed  Google Scholar 

  36. Danielsson AJ, Cederlund CG, Ekholm S, Nachemson AL (2001) The prevalence of disc aging and back pain after fusion extending into the lower lumbar spine. A matched MR study twenty-five years after surgery for adolescent idiopathic scoliosis. Acta Radiol 42:187–197

    PubMed  CAS  Google Scholar 

  37. de Roos A, Kressel H, Spritzer C, Dalinka M (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 149:531–534

    PubMed  Google Scholar 

  38. Elfering A, Semmer N, Birkhofer D, Zanetti M et al (2002) Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine 27:125–134. doi:10.1097/00007632-200201150-00002

    Article  PubMed  Google Scholar 

  39. Esposito P, Pinheiro-Franco JL, Froelich S, Maitrot D (2006) Predictive value of MRI vertebral end-plate signal changes (Modic) on outcome of surgically treated degenerative disc disease. Results of a cohort study including 60 patients. Neurochirurgie 52:315–322. doi:10.1016/S0028-3770(06)71225-5

    Article  PubMed  Google Scholar 

  40. Fagan A, Moore R, Vernon RB, Blumbergs P et al (2003) ISSLS prize winner: the innervation of the intervertebral disc: a quantitative analysis. Spine 28:2570–2576. doi:10.1097/01.BRS.0000096942.29660.B1

    Article  PubMed  Google Scholar 

  41. Fayad F, Lefevre-Colau MM, Rannou F, Quintero N et al (2007) Relation of inflammatory modic changes to intradiscal steroid injection outcome in chronic low back pain. Eur Spine J 16:925–931. doi:10.1007/s00586-006-0301-y

    Article  PubMed  Google Scholar 

  42. Flipo RM, Cotten A, Chastanet P, Ardaens Y et al (1996) Evaluation of destructive spondyloarthropathies in hemodialysis by computerized tomographic scan and magnetic resonance imaging. J Rheumatol 23:869–873

    PubMed  CAS  Google Scholar 

  43. Freemont AJ, Peacock TE, Goupille P, Hoyland JA et al (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350:178–181. doi:10.1016/S0140-6736(97)02135-1

    Article  PubMed  CAS  Google Scholar 

  44. Frobin W, Brinckmann P, Kramer M, Hartwig E (2001) Height of lumbar discs measured from radiographs compared with degeneration and height classified from MR images. Eur Radiol 11:263–269. doi:10.1007/s003300000556

    Article  PubMed  CAS  Google Scholar 

  45. Fruhwald F, Fruhwald S, Hajek PC, Schwaighofer B et al (1988) Focal fatty deposits in spinal bone marrow-MR findings. MRI of focal fatty deposits. Rofo 148:75–78

    PubMed  CAS  Google Scholar 

  46. Gibson MJ, Buckley J, Mulholland RC, Worthington BS (1986) The changes in the intervertebral disc after chemonucleolysis demonstrated by magnetic resonance imaging. J Bone Joint Surg Br 68:719–723

    PubMed  CAS  Google Scholar 

  47. Gillams AR, Chaddha B, Carter AP (1996) MR appearances of the temporal evolution and resolution of infectious spondylitis. AJR Am J Roentgenol 166:903–907

    PubMed  CAS  Google Scholar 

  48. Gokhale YA, Ambardekar AG, Bhasin A, Patil M et al (2003) Brucella spondylitis and sacroiliitis in the general population in Mumbai. J Assoc Physicians India 51:659–666

    PubMed  CAS  Google Scholar 

  49. Grand CM, Bank WO, Baleriaux D, Matos C et al (1993) Gadolinium enhancement of vertebral endplates following lumbar disc surgery. Neuroradiology 35:503–505. doi:10.1007/BF00588706

    Article  PubMed  CAS  Google Scholar 

  50. Grane P, Josephsson A, Seferlis A, Tullberg T (1998) Septic and aseptic post-operative discitis in the lumbar spine-evaluation by MR imaging. Acta Radiol 39:108–115

    PubMed  CAS  Google Scholar 

  51. Gratz S, Dorner J, Fischer U, Behr TM et al (2002) 18F-FDG hybrid PET in patients with suspected spondylitis. Eur J Nucl Med Mol Imaging 29:516–524

    Article  PubMed  CAS  Google Scholar 

  52. Hajek PC, Baker LL, Goobar JE, Sartoris DJ et al (1987) Focal fat deposition in axial bone marrow: MR characteristics. Radiology 162:245–249

    PubMed  CAS  Google Scholar 

  53. Hamanishi C, Kawabata T, Yosii T, Tanaka S (1994) Schmorl’s nodes on magnetic resonance imaging. Their incidence and clinical relevance. Spine 19:450–453. doi:10.1097/00007632-199402001-00012

    Article  PubMed  CAS  Google Scholar 

  54. Hancock MJ, Maher CG, Latimer J, Spindler MF et al (2007) Systematic review of tests to identify the disc, SIJ or facet joint as the source of low back pain. Eur Spine J 16:1539–1550. doi:10.1007/s00586-007-0391-1

    Article  PubMed  CAS  Google Scholar 

  55. Hayes CW, Jensen ME, Conway WF (1989) Non-neoplastic lesions of vertebral bodies: findings in magnetic resonance imaging. Radiographics 9:883–903

    PubMed  CAS  Google Scholar 

  56. Herbsthofer B, Eysel P, Eckardt A, Humke T (1996) Diagnosis and therapy of erosive intervertebral osteochondrosis. Z Orthop Ihre Grenzgeb 134:465–471

    Article  PubMed  CAS  Google Scholar 

  57. Hermann KG, Bollow M (2004) Magnetic resonance imaging of the axial skeleton in rheumatoid disease. Best Pract Res Clin Rheumatol 18:881–907. doi:10.1016/j.berh.2004.06.005

    Article  PubMed  Google Scholar 

  58. Hirji KF, Tsiatis AA, Mehta CR (1989) Median unbiased estimation for binary data. Am Stat 43:7–11. doi:10.2307/2685158

    Article  Google Scholar 

  59. Hosten N, Lemke AJ, Mayer HM, Dihlmann SW et al (1995) Spondylitis: borderline findings in magnetic resonance tomography. Aktuelle Radiol 5:164–168

    PubMed  CAS  Google Scholar 

  60. Hung-ta HW, William BM, Schweitzer ME (2006) Edematous Schmorls nodes on thoracolumbar MR imaging: characteristic patterns and changes over time. Skeletal Radiol 35:212–219. doi:10.1007/s00256-005-0068-y

    Article  Google Scholar 

  61. Ito M, Incorvaia KM, Yu SF, Fredrickson BE et al (1998) Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine 23:1252–1258. doi:10.1097/00007632-199806010-00016

    Article  PubMed  CAS  Google Scholar 

  62. Jarvik JG, Hollingworth W, Heagerty PJ, Haynor DR et al (2005) Three-year incidence of low back pain in an initially asymptomatic cohort: clinical and imaging risk factors. Spine 30:1541–1548. doi:10.1097/01.brs.0000167536.60002.87

    Article  PubMed  Google Scholar 

  63. Jensen TS, Sorensen JS, Kjaer P (2007) Intra- and interobserver reproducibility of vertebral endplate signal (modic) changes in the lumbar spine: the Nordic Modic Consensus Group classification. Acta Radiol 48:748–754. doi:10.1080/02841850701422112

    Article  PubMed  CAS  Google Scholar 

  64. Jevtic V (2001) Magnetic resonance imaging appearances of different discovertebral lesions. Eur Radiol 11:1123–1135. doi:10.1007/s003300000727

    Article  PubMed  CAS  Google Scholar 

  65. Jevtic V, Kos-Golja M, Rozman B, McCall I (2000) Marginal erosive discovertebral “Romanus” lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging. Skeletal Radiol 29:27–33. doi:10.1007/s002560050005

    Article  PubMed  CAS  Google Scholar 

  66. Jevtic V, Majcen N (2004) Demonstration of evolution of hemispherical spondysclerosis by contrast enhanced Gd-DTPA magnetic resonance imaging. Radiol Oncol 38:275–284

    Google Scholar 

  67. Jim JJ, Noponen-Hietala N, Cheung KM, Ott J et al (2005) The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine 30:2735–2742. doi:10.1097/01.brs.0000190828.85331.ef

    Article  PubMed  Google Scholar 

  68. Jones A, Clarke A, Freeman BJ, Lam KS et al (2005) The Modic classification: inter- and intraobserver error in clinical practice. Spine 30(16):1867–1869

    Article  PubMed  Google Scholar 

  69. Kahn T, Weigert F, Reiser M, Heuck A et al (1987) The MRT demonstration of bone marrow changes in intervertebral disk degeneration. Rofo 147:320–324

    PubMed  CAS  Google Scholar 

  70. Kapeller P, Fazekas F, Krametter D, Koch M et al (1997) Pyogenic infectious spondylitis: clinical, laboratory and MRI features. Eur Neurol 38:94–98. doi:10.1159/000113167

    Article  PubMed  CAS  Google Scholar 

  71. Karacan IM, Aydin TM (2006) Lumbar disc herniation in ankylosing spondylitis: a dual role of discovertebral enthesopathy. Neurosurg Q 16:74–76. doi:10.1097/00013414-200606000-00004 Article

    Article  Google Scholar 

  72. Karchevsky M, Schweitzer ME, Carrino JA, Zoga A et al (2005) Reactive endplate marrow changes: a systematic morphologic and epidemiologic evaluation. Skeletal Radiol 34:125–129. doi:10.1007/s00256-004-0886-3

    Article  PubMed  Google Scholar 

  73. Karppinen J, Daavittila I, Solovieva S, Kuisma M et al (2008) Genetic factors are associated with modic changes in endplates of lumbar vertebral bodies. Spine 33:1236–1241

    PubMed  Google Scholar 

  74. Karppinen J, Mikkonen P, Kurunlahti M, Tervonen O et al (2003) Chronic Chlamydia pneumoniae infection increases the risk of occlusion of lumbar segmental arteries of patients with sciatica: a 3-year follow-up study. Spine 28:E284–E289. doi:10.1097/00007632-200308010-00022

    Article  PubMed  Google Scholar 

  75. Karppinen J, Paakko E, Paassilta P, Lohiniva J et al (2003) Radiologic phenotypes in lumbar MR imaging for a gene defect in the COL9A3 gene of type IX collagen. Radiology 227:143–148. doi:10.1148/radiol.2271011821

    Article  PubMed  Google Scholar 

  76. Karppinen J, Paakko E, Raina S, Tervonen O et al (2002) Magnetic resonance imaging findings in relation to the COL9A2 tryptophan allele among patients with sciatica. Spine 27:78–83. doi:10.1097/00007632-200201010-00018

    Article  PubMed  Google Scholar 

  77. Kato F, Ando T, Kawakami N, Mimatsu K et al (1993) The increased signal intensity at the vertebral body endplates after chemonucleolysis demonstrated by magnetic resonance imaging. Spine 18:2276–2281. doi:10.1097/00007632-199311000-00023

    Article  PubMed  CAS  Google Scholar 

  78. Kerttula LI, Serlo WS, Tervonen OA, Paakko EL et al (2000) Post-traumatic findings of the spine after earlier vertebral fracture in young patients: clinical and MRI study. Spine 25:1104–1108. doi:10.1097/00007632-200005010-00011

    Article  PubMed  CAS  Google Scholar 

  79. Kim JM, Lee SH, Ahn Y, Yoon DH et al (2007) Recurrence after successful percutaneous endoscopic lumbar discectomy. Minim Invasive Neurosurg 50:82–85. doi:10.1055/s-2007-982504

    Article  PubMed  CAS  Google Scholar 

  80. Kjaer P, Korsholm L, Bendix T, Sorensen JS et al (2006) Modic changes and their associations with clinical findings. Eur Spine J 15:1312–1319. doi:10.1007/s00586-006-0185-x

    Article  PubMed  Google Scholar 

  81. Kjaer P, Leboeuf-Yde C, Korsholm L, Sorensen JS et al (2005) Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine 30:1173–1180. doi:10.1097/01.brs.0000162396.97739.76

    Article  PubMed  Google Scholar 

  82. Kjaer P, Leboeuf-Yde C, Sorensen JS, Bendix T (2005) An epidemiologic study of MRI and low back pain in 13-year-old children. Spine 30:798–806. doi:10.1097/01.brs.0000157424.72598.ec

    Article  PubMed  Google Scholar 

  83. Kleinstuck F, Dvorak J, Mannion AF (2006) Are “structural abnormalities” on magnetic resonance imaging a contraindication to the successful conservative treatment of chronic nonspecific low back pain? Spine 31:2250–2257. doi:10.1097/01.brs.0000232802.95773.89

    Article  PubMed  Google Scholar 

  84. Kokkonen SM, Kurunlahti M, Tervonen O, Ilkko E et al (2002) Endplate degeneration observed on magnetic resonance imaging of the lumbar spine: correlation with pain provocation and disc changes observed on computed tomography diskography. Spine 27:2274–2278. doi:10.1097/00007632-200210150-00017

    Article  PubMed  Google Scholar 

  85. Korhonen T, Karppinen J, Paimela L, Malmivaara A et al (2006) The treatment of disc herniation-induced sciatica with infliximab: one-year follow-up results of FIRST II, a randomized controlled trial. Spine 31:2759–2766. doi:10.1097/01.brs.0000245873.23876.1e

    Article  PubMed  Google Scholar 

  86. Kowalski TJ, Layton KF, Berbari EF, Steckelberg JM et al (2007) Follow-up MR imaging in patients with pyogenic spine infections: lack of correlation with clinical features. AJNR Am J Neuroradiol 28:693–699

    PubMed  CAS  Google Scholar 

  87. Kuisma M, Karppinen J, Niinimaki J, Kurunlahti M et al (2006) A three-year follow-up of lumbar spine endplate (Modic) changes. Spine 31:1714–1718. doi:10.1097/01.brs.0000224167.18483.14

    Article  PubMed  Google Scholar 

  88. Kuisma M, Karppinen J, Niinimaki J, Ojala R et al (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine 32:1116–1122. doi:10.1097/01.brs.0000261561.12944.ff

    Article  PubMed  Google Scholar 

  89. Lang P, Chafetz N, Genant HK, Morris JM (1990) Lumbar spinal fusion. Assessment of functional stability with magnetic resonance imaging. Spine 15:581–588. doi:10.1097/00007632-199006000-00028

    Article  PubMed  CAS  Google Scholar 

  90. Langlois S, Cedoz JP, Lohse A, Toussirot E et al (2005) Aseptic discitis in patients with ankylosing spondylitis: a retrospective study of 14 cases. Joint Bone Spine 72:248–253. doi:10.1016/j.jbspin.2004.05.015

    Article  PubMed  Google Scholar 

  91. Langlois S, Cedoz JP, Lohse A, Toussirot E et al (2005) Les spondylodiscites aseptiques de la spondylarthrite ankylosante : etude retrospective de 14 cas. Rev Rhum 72:420–426. doi:10.1016/j.rhum.2004.05.022

    Article  Google Scholar 

  92. Laredo JD, Vuillemin-Bodaghi V, Boutry N, Cotten A et al (2007) SAPHO syndrome: MR appearance of vertebral involvement. Radiology 242:825–831. doi:10.1148/radiol.2423051222

    Article  PubMed  Google Scholar 

  93. Ledermann HP, Schweitzer ME, Morrison WB, Carrino JA (2003) MR imaging findings in spinal infections: rules or myths? Radiology 228:506–514. doi:10.1148/radiol.2282020752

    Article  PubMed  Google Scholar 

  94. Lee SI, Jin W (1999) MR imaging of Schmorl’s nodes and several factors influencing enhancement of Schmorl’s nodes. Riv Neuroradiol 12:191–192

    Google Scholar 

  95. Lenz GP, Assheuer J, Lenz W, Gottschlich KW (1990) New aspects of lumbar disc disease. MR imaging and histological findings. Arch Orthop Trauma Surg 109:75–82. doi:10.1007/BF00439383

    Article  PubMed  CAS  Google Scholar 

  96. Lim CH, Jee WH, Son BC, Kim DH et al (2005) Discogenic lumbar pain: association with MR imaging and CT discography. Eur J Radiol 54:431–437. doi:10.1016/j.ejrad.2004.05.014

    Article  PubMed  Google Scholar 

  97. Liphofer JP, Theodoridis T, Becker GT, Koester O et al (2006) (Modic) signal alterations of vertebral endplates and their correlation to a minimally invasive treatment of lumbar disc herniation using epidural injections. Rofo 178:1105–1114

    PubMed  CAS  Google Scholar 

  98. Liphofer JP, Theodoridis T, Becker GT, Koester O et al (2006) (Modic) signal alterations of vertebral endplates and their correlation to a minimally invasive treatment of lumbar disc herniation using epidural injections. Rofo 178:1105–1114

    PubMed  CAS  Google Scholar 

  99. Lusins JO, Cicoria AD, Goldsmith SJ (1998) SPECT and lumbar MRI in back pain with emphasis on changes in end plates in association with disc degeneration. J Neuroimaging 8:78–82

    PubMed  CAS  Google Scholar 

  100. Maksymowych WP, Dhillon SS, Park R, Salonen D et al (2007) Validation of the spondyloarthritis research consortium of Canada magnetic resonance imaging spinal inflammation index: is it necessary to score the entire spine? Arthritis Rheum 57:501–507. doi:10.1002/art.22627

    Article  PubMed  Google Scholar 

  101. Malinin T, Brown MD (2007) Changes in vertebral bodies adjacent to acutely narrowed intervertebral discs: observations in baboons. Spine 32:E603–E607

    PubMed  Google Scholar 

  102. Marc V, Dromer C, Le Guennec P, Manelfe C et al (1997) Magnetic resonance imaging and axial involvement in spondylarthropathies. Delineation of the spinal entheses. Rev Rhum Engl Ed 64:465–473

    PubMed  CAS  Google Scholar 

  103. Marzo-Ortega H, McGonagle D, O’Connor P, Emery P (2001) Efficacy of etanercept in the treatment of the entheseal pathology in resistant spondylarthropathy: a clinical and magnetic resonance imaging study. Arthritis Rheum 44:2112–2117. doi :10.1002/1529-0131(200109)44:9<2112::AID-ART363>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  104. Mitra D, Cassar-Pullicino VN, McCall IW (2004) Longitudinal study of vertebral type-1 end-plate changes on MR of the lumbar spine. Eur Radiol 14:1574–1581. doi:10.1007/s00330-004-2314-4

    Article  PubMed  CAS  Google Scholar 

  105. Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168:177–186

    PubMed  CAS  Google Scholar 

  106. Modic MT, Steinberg PM, Ross JS, Masaryk TJ et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    PubMed  CAS  Google Scholar 

  107. Molla E, Marti-Bonmati L, Arana E, Martinez-Bisbal MC et al (2005) Magnetic resonance myelography evaluation of the lumbar spine end plates and intervertebral disks. Acta Radiol 46:83–88. doi:10.1080/02841850510016036

    Article  PubMed  CAS  Google Scholar 

  108. Moore RJ, Vernon-Roberts B, Osti OL, Fraser RD (1996) Remodeling of vertebral bone after outer anular injury in sheep. Spine 21:936–940. doi:10.1097/00007632-199604150-00006

    Article  PubMed  CAS  Google Scholar 

  109. Mulconrey DS, Knight RQ, Bramble JD, Paknikar S et al (2006) Interobserver reliability in the interpretation of diagnostic lumbar MRI and nuclear imaging. Spine J 6:177–184. doi:10.1016/j.spinee.2005.08.011

    Article  PubMed  Google Scholar 

  110. Narvani AA, Tsiridis E, Wilson LF (2003) High-intensity zone, intradiscal electrothermal therapy, and magnetic resonance imaging. J Spinal Disord Tech 16:130–136

    PubMed  CAS  Google Scholar 

  111. Ohtori S, Inoue G, Ito T, Koshi T et al (2006) Tumor necrosis factor-immunoreactive cells and PGP 9.5-immunoreactive nerve fibers in vertebral endplates of patients with discogenic low back pain and Modic Type 1 or Type 2 changes on MRI. Spine 31:1026–1031. doi:10.1097/01.brs.0000215027.87102.7c

    Article  PubMed  Google Scholar 

  112. Paassilta P, Lohiniva J, Goring HH, Perala M et al (2001) Identification of a novel common genetic risk factor for lumbar disk disease. JAMA 285:1843–1849. doi:10.1001/jama.285.14.1843

    Article  PubMed  CAS  Google Scholar 

  113. Park SW, Lee JH, Ehara S, Park YB et al (2004) Single shot fast spin echo diffusion-weighted MR imaging of the spine; Is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Clin Imaging 28:102–108. doi:10.1016/S0899-7071(03)00247-X

    Article  PubMed  Google Scholar 

  114. Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine 20:743–747. doi:10.1097/00007632-199503150-00018

    Article  PubMed  CAS  Google Scholar 

  115. Peterson CK, Gatterman B, Carter JC, Humphreys BK et al (2007) Inter- and intraexaminer reliability in identifying and classifying degenerative marrow (Modic) changes on lumbar spine magnetic resonance scans. J Manipulative Physiol Ther 30:85–90. doi:10.1016/j.jmpt.2006.12.001

    Article  PubMed  Google Scholar 

  116. Putzier M, Schneider SV, Funk JF, Tohtz SW et al (2005) The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine 30:E109–E114. doi:10.1097/01.brs.0000154630.79887.ef

    Article  PubMed  Google Scholar 

  117. Quack C, Schenk P, Laeubli T, Spillmann S et al (2007) Do MRI findings correlate with mobility tests? An explorative analysis of the test validity with regard to structure. Eur Spine J 16:803–812. doi:10.1007/s00586-006-0264-z

    Article  PubMed  Google Scholar 

  118. Raininko R, Manninen H, Battie MC, Gibbons LE et al (1995) Observer variability in the assessment of disc degeneration on magnetic resonance images of the lumbar and thoracic spine. Spine 20:1029–1035. doi:10.1097/00007632-199505000-00009

    Article  PubMed  CAS  Google Scholar 

  119. Rajasekaran S, Babu JN, Arun R, Armstrong BR et al (2004) ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 29:2654–2667. doi:10.1097/01.brs.0000148014.15210.64

    Article  PubMed  CAS  Google Scholar 

  120. Rannou F, Ouanes W, Boutron I, Lovisi B et al (2007) High-sensitivity C-reactive protein in chronic low back pain with vertebral end-plate Modic signal changes. Arthritis Rheum 57:1311–1315. doi:10.1002/art.22985

    Article  PubMed  CAS  Google Scholar 

  121. Raya JG, Dietrich O, Birkenmaier C, Sommer J et al (2007) Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine. Eur Radiol 17:2872–2879. doi:10.1007/s00330-007-0618-x

    Article  PubMed  CAS  Google Scholar 

  122. Ross JS, Zepp R, Modic MT (1996) The postoperative lumbar spine: enhanced MR evaluation of the intervertebral disk. AJNR Am J Neuroradiol 17:323–331

    PubMed  CAS  Google Scholar 

  123. Saifuddin A, Renton P, Taylor BA (1998) Effects on the vertebral end-plate of uncomplicated lumbar discography: an MRI study. Eur Spine J 7:36–39. doi:10.1007/s005860050024

    Article  PubMed  CAS  Google Scholar 

  124. Sandhu HS, Sanchez-Caso LP, Parvataneni HK, Cammisa FP Jr et al (2000) Association between findings of provocative discography and vertebral endplate signal changes as seen on MRI. J Spinal Disord 13:438–443. doi:10.1097/00002517-200010000-00012

    Article  PubMed  CAS  Google Scholar 

  125. Saywell WR, Crock HV, England JP, Steiner RE (1989) Demonstration of vertebral body end plate veins by magnetic resonance imaging. Br J Radiol 62:290–292

    Article  PubMed  CAS  Google Scholar 

  126. Schenk P, Laubli T, Hodler J, Klipstein A (2006) Magnetic resonance imaging of the lumbar spine: findings in female subjects from administrative and nursing professions. Spine 31:2701–2706. doi:10.1097/01.brs.0000244570.36954.17

    Article  PubMed  Google Scholar 

  127. Schmid G, Witteler A, Willburger R, Kuhnen C et al (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology 231:352–358. doi:10.1148/radiol.2312021708

    Article  PubMed  Google Scholar 

  128. Seki S, Kawaguchi Y, Mori M, Mio F et al (2006) Association study of COL9A2 with lumbar disc disease in the Japanese population. J Hum Genet 51:1063–1067. doi:10.1007/s10038-006-0062-9

    Article  PubMed  CAS  Google Scholar 

  129. Seymour R, Williams LA, Rees JI, Lyons K et al (1998) Magnetic resonance imaging of acute intraosseous disc herniation. Clin Radiol 53:363–368. doi:10.1016/S0009-9260(98)80010-X

    Article  PubMed  CAS  Google Scholar 

  130. Sharif HS, Aideyan OA, Clark DC, Madkour MM et al (1989) Brucellar and tuberculous spondylitis: comparative imaging features. Radiology 171:419–425

    PubMed  CAS  Google Scholar 

  131. Shen M, Razi A, Lurie JD, Hanscom B et al (2007) Retrolisthesis and lumbar disc herniation: a preoperative assessment of patient function. Spine J 7:406–413. doi:10.1016/j.spinee.2006.08.011

    Article  PubMed  Google Scholar 

  132. Siddiqui AH, Rafique MZ, Ahmad MN, Usman MU (2005) Role of magnetic resonance imaging in lumbar spondylosis. J Coll Physicians Surg Pak 15:396–399

    PubMed  Google Scholar 

  133. Song KS, Ogden JA, Ganey T, Guidera KJ (1997) Contiguous discitis and osteomyelitis in children. J Pediatr Orthop 17:470–477. doi:10.1097/00004694-199707000-00012 Infection

    Article  PubMed  CAS  Google Scholar 

  134. Stabler A, Baur A, Kruger A, Weiss M et al (1998) Differential diagnosis of erosive osteochondrosis and bacterial spondylitis: magnetic resonance tomography (MRT). Rofo 168:421–428

    PubMed  CAS  Google Scholar 

  135. Stabler A, Bellan M, Weiss M, Gartner C et al (1997) MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol 168:933–938

    PubMed  CAS  Google Scholar 

  136. Stabler A, Weiss M, Scheidler J, Krodel A et al (1996) Degenerative disk vascularization on MRI: correlation with clinical and histopathologic findings. Skeletal Radiol 25:119–126. doi:10.1007/s002560050047

    Article  PubMed  CAS  Google Scholar 

  137. Stumpe KD, Zanetti M, Weishaupt D, Hodler J et al (2002) FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 179:1151–1157

    PubMed  Google Scholar 

  138. Takeno K, Kobayashi S, Yonezawa T, Hayakawa K et al (2006) Salvage operation for persistent low back pain and sciatica induced by percutaneous laser disc decompression performed at outside institution: correlation of magnetic resonance imaging and intraoperative and pathological findings. Photomed Laser Surg 24:414–423. doi:10.1089/pho.2006.24.414

    Article  PubMed  Google Scholar 

  139. Tanigawa N, Komemushi A, Kariya S, Kojima H et al (2006) Percutaneous vertebroplasty: relationship between vertebral body bone marrow edema pattern on MR images and initial clinical response. Radiology 239:195–200. doi:10.1148/radiol.2391050073

    Article  PubMed  Google Scholar 

  140. Toyone T, Takahashi K, Kitahara H, Yamagata M et al (1994) Vertebral bone-marrow changes in degenerative lumbar disc disease. An MRI study of 74 patients with low back pain. J Bone Joint Surg Br 76:757–764

    PubMed  CAS  Google Scholar 

  141. Trout AT, Kallmes DF, Layton KF, Thielen KR et al (2006) Vertebral endplate fractures: an indicator of the abnormal forces generated in the spine after vertebroplasty. J Bone Miner Res 21:1797–1802. doi:10.1359/jbmr.060723

    Article  PubMed  Google Scholar 

  142. Tyrrell PN, Davies AM, Evans N, Jubb RW (1995) Signal changes in the intervertebral discs on MRI of the thoracolumbar spine in ankylosing spondylitis. Clin Radiol 50:377–383. doi:10.1016/S0009-9260(05)83134-4

    Article  PubMed  CAS  Google Scholar 

  143. Ulrich JA, Liebenberg EC, Thuillier DU, Lotz JC (2007) ISSLS prize winner: repeated disc injury causes persistent inflammation. Spine 32:2812–2819

    PubMed  Google Scholar 

  144. Van Goethem JW, Parizel PM, Jinkins JR (2002) Review article: MRI of the postoperative lumbar spine. Neuroradiology 44:723–739. doi:10.1007/s00234-002-0790-2

    Article  PubMed  Google Scholar 

  145. Van Goethem JW, Parizel PM, van den Hauwe L, Van de Kelft E et al (2000) The value of MRI in the diagnosis of postoperative spondylodiscitis. Neuroradiology 42:580–585. doi:10.1007/s002340000361

    Article  PubMed  Google Scholar 

  146. Videman T, Battie MC, Ripatti S, Gill K et al (2006) Determinants of the progression in lumbar degeneration: a 5-year follow-up study of adult male monozygotic twins. Spine 31:671–678. doi:10.1097/01.brs.0000202558.86309.ea

    Article  PubMed  Google Scholar 

  147. Virtanen IM, Song YQ, Cheung KMC, Ala-Kokko L et al (2007) Phenotypic and population differences in the association between CILP and lumbar disc disease. J Med Genet 44:285–288. doi:10.1136/jmg.2006.047076

    Article  PubMed  CAS  Google Scholar 

  148. Visuri T, Pihlajamaki H, Eskelin M (2005) Long-term vertebral changes attributable to postoperative lumbar discitis: a retrospective study of six cases. Clin Orthop Relat Res (433) 97–105. doi:10.1097/01.blo.0000151425.00945.2a

  149. Vital JM, Gille O, Pointillart V, Pedram M et al (2003) Course of Modic 1 six months after lumbar posterior osteosynthesis. Spine 28:715–720. doi:10.1097/00007632-200304010-00017

    Article  PubMed  CAS  Google Scholar 

  150. Voormolen MH, van Rooij WJ, Sluzewski M, van der Graaf Y et al (2006) Pain response in the first trimester after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures with or without bone marrow edema. AJNR Am J Neuroradiol 27:1579–1585

    PubMed  CAS  Google Scholar 

  151. Wagner AL, Murtagh FR, Arrington JA, Stallworth D (2000) Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 21:276–281

    PubMed  CAS  Google Scholar 

  152. Wagner SC, Schweitzer ME, Morrison WB, Przybylski GJ et al (2000) Can imaging findings help differentiate spinal neuropathic arthropathy from disk space infection? Initial experience. Radiology 214:693–699

    PubMed  CAS  Google Scholar 

  153. Weishaupt D, Zanetti M, Hodler J, Boos N (1998) MR imaging of the lumbar spine: prevalence of intervertebral disk extrusion and sequestration, nerve root compression, end plate abnormalities, and osteoarthritis of the facet joints in asymptomatic volunteers. Radiology 209:661–666

    PubMed  CAS  Google Scholar 

  154. Weishaupt D, Zanetti M, Hodler J, Min K et al (2001) Painful lumbar disk derangement: relevance of endplate abnormalities at MR imaging. Radiology 218:420–427

    PubMed  CAS  Google Scholar 

  155. Wienands K, Lukas P, Albrecht HJ (1990) Clinical value of MR tomography of spondylodiscitis in ankylosing spondylitis. Z Rheumatol 49:356–360

    PubMed  CAS  Google Scholar 

  156. Yong PY, Alias NAA, Shuaib IL (2003) Correlation of clinical presentation, radiography, and magnetic resonance imaging for low back pain—a preliminary survey. J Hong Kong Coll Radiol 6:144–151

    Google Scholar 

  157. Yuh WT, Marsh EEIII, Wang AK, Russell JW et al (1992) MR imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol 13:145–154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by grants from the Danish Foundation of Chiropractic Research and Postgraduate Education (Tue Secher Jensen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tue Secher Jensen.

Appendix

Appendix

See Table 5.

Table 5  

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, T.S., Karppinen, J., Sorensen, J.S. et al. Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J 17, 1407–1422 (2008). https://doi.org/10.1007/s00586-008-0770-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0770-2

Keywords

Navigation