Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview


Structural discontinuity in the spinal cord after injury results in a disruption in the impulse conduction resulting in loss of various bodily functions depending upon the level of injury. This article presents a summary of the scientific research employing electrical stimulation as a means for anatomical or functional recovery for patients suffering from spinal cord injury. Electrical stimulation in the form of functional electrical stimulation (FES) can help facilitate and improve upper/lower limb mobility along with other body functions lost due to injury e.g. respiratory, sexual, bladder or bowel functions by applying a controlled electrical stimulus to generate contractions and functional movement in the paralysed muscles. The available rehabilitative techniques based on FES technology and various Food and Drug Administration, USA approved neuroprosthetic devices that are in use are discussed. The second part of the article summarises the experimental work done in the past 2 decades to study the effects of weakly applied direct current fields in promoting regeneration of neurites towards the cathode and the new emerging technique of oscillating field stimulation which has shown to promote bidirectional regeneration in the injured nerve fibres. The present article is not intended to be an exhaustive review but rather a summary aiming to highlight these two applications of electrical stimulation and the degree of anatomical/functional recovery associated with these in the field of spinal cord injury research.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12(12):4381–4390

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24(3):379–402

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Alon G, McBride K (2003) Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil 84(1):119–124

    PubMed  Article  Google Scholar 

  4. 4.

    Borgens RB (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing? Int Rev Cytol 76:245–298

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Borgens RB (2003) Restoring function to the injured human spinal cord. Adv Anat Embryol Cell Biol 171:III-IV, 1–155

    Google Scholar 

  6. 6.

    Borgens RB, Bohnert DM (1997) The responses of mammalian spinal axons to an applied DC voltage gradient. Exp Neurol 145:376–389

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Borgens RB, McGinnis Vanable JW et al (1984) Stump currents in regenerating salamanders and newts. J Exp Zool 231(2):249–256

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Borgens RB, Blight AR, Murphy DJ (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol 250(2):168–180

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Borgens RB, Blight AR, McGinnis ME (1987) Behavioural recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238(4825):366–369

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Borgens RB, Blight AR, McGinnis ME (1990) Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields. J Comp Neurol 296(4):634–653

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Borgens RB, Toombs JP, Blight AR et al (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restor Neurol Neurosci 5:305–322

    Google Scholar 

  13. 13.

    Borgens RB, Toombs JP, Bauer G et al (1999) An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J Neurotrauma 16:639–657

    PubMed  CAS  Google Scholar 

  14. 14.

    Borgens RB, Shi R, Bohnert D (2002) Behavioural recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 205:1–12

    PubMed  Google Scholar 

  15. 15.

    Brindley G (1994) The first 500 patients with sacral anterior root stimulator implants:General description. Paraplegia 32:795–805

    PubMed  CAS  Google Scholar 

  16. 16.

    Brissot R, Gallien P, Le Bot MP et al (2000) Clinical experience wit functional electrical stimulation-assisted gait with parastep in spinal cord injured patients. Spine 25(4):501–508

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Creasey GH, Grill JH, Hoi SU et al (2001) An Implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial. Arch Phys Med Rehabil 82:1512–1519

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Cripps RA (2004) Spinal cord injury, Australia, 2002–03. Injury research and statistics series no 22. AIHW (AIHW Cat no INJCAT64), Adelaide

  19. 19.

    Davis R, Eckhouse J, Patrick J et al (1987) Computerised 22 channel stimulator for limb movement. Appl Neurophysiol 50:444–448

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Davis R, Patrick J, Barriskill A (2001) Development of functional electrical stimulators utilizing cochlear implant technology. Med Eng Phys 23:61–68

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    DeForge D, Nymark J, Lemaire E et al (2004) Effects of 4-aminopyridine on gait in ambulatory spinal cord injuries: a double-blind, placebo-controlled, crossover trial. Spinal Cord 42(12):674–685

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Donaldson J, Shi R, Borgens R (2002) Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 50:147–157

    PubMed  Article  Google Scholar 

  23. 23.

    DiMarco AF, Onders RP, Ignagni A et al (2005) Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest 127(2):671–678

    PubMed  Article  Google Scholar 

  24. 24.

    Egon G, Barat M, Colombel P et al (1998) Implantation of anterior sacral root stimulators combined with posterior sacral rhizotomy in spinal injury patients. World J Urol 16:342–349

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Facts and figures at a glance (2006) National Spinal Cord Injury Statistical Centre, University of Alabama at Birmingham web site. Available at Accessed 18 Oct 2006

  26. 26.

    Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Fehlings MG, Tator CH (1992) The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 579:32–42

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Fehlings MG, Sekhon LHS (2000) Cellular, ionic and biomolecular mechanisms of the injury process. In: Tator CH, Benzel EC (eds) Contemporary management of spinal cord injury: from impact to rehabilitation. American Association of Neurological Surgeons, New York, pp 33–50

    Google Scholar 

  29. 29.

    Fehlings MG, Tator CH, Linden RD (1988) The effect of an applied direct current field on recovery from acute experimental spinal cord injury. J Neurosurg 68:781–792

    PubMed  CAS  Google Scholar 

  30. 30.

    Galvani L (1791) Commentary on the effect of electricity on muscular motion translated by Green RM. Elizabeth Litcht Publishing co 1953, Cambridge

    Google Scholar 

  31. 31.

    Gallien P, Brissot R, Eyssette M et al (1995) Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia 33(11):660–664

    PubMed  CAS  Google Scholar 

  32. 32.

    Gazula VR, Roberts M, Luzzio C et al (2004) Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol 476(2):130–145

    PubMed  Article  Google Scholar 

  33. 33.

    Geschwind N (1965) Disconnexion syndrome in animals and man. Brain 88:237–294

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Gorman PH (2000) An update on functional electrical stimulation after spinal cord injury. Neurorehabil Neural Repair 14:251–263

    PubMed  CAS  Google Scholar 

  35. 35.

    Grados- Munro EM, Fournier AE (2003) Myelin-associated inhibitors of axon regeneration. J Neurosci Res 74:479–485

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Graupe D (2002) An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics. Neurol Res 24(5):431–442

    PubMed  Article  Google Scholar 

  37. 37.

    Graupe D, Kohn KH (1998) Functional neuromuscular stimulator for short distance ambulation by certain thoracic level spinal cord injured paraplegics. Surg Neurol 50(3):202–207

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Grijalva I, Guizar-Sahagun G, Castaneda-Hernandez G et al (2003) Efficacy and safety of 4-aminopyridine in patients with long term spinal cord injury: a randomized, double-blind, placebo-controlled trial. Pharmacotherapy 23(7):823–834

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Heruti RJ, Katz H, Menashe Y et al (2001) Treatment of male infertility due to spinal cord injury using rectal probe electroejaculation: the Israeli experience. Spinal Cord 39(3):168–175

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hinkle L, McCaig CD, Robinson KR (1981) The direction of growth of differentiating neurons and myeloblasts from frog embryos in an applied electric field. J Physiol 314:121–135

    PubMed  CAS  Google Scholar 

  41. 41.

    Hobby J, Taylor PN, Esnouf J (2001) restoration of tetraplegics hand function by the use of the neurocontrol freehand system. J Hand Surg Br 26(5):459–464

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Hotary KB, Robinson KR (1990) Endogenous electric currents and the resultant voltage gradients in the chick embryo. Dev Biol 140(1):149–160

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Hotary KB, Robinson KR (1994) Endogenous electric currents and voltage gradients in xenopus embryos and the consequences of their disruption. Dev Biol 166(2):789–800

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Hulbert RJ (2000) Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg (Spine 1) 93:1–7

    Google Scholar 

  45. 45.

    Jacobs PL, Johnson B, Mahoney ET (2003) Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia. J Spinal Cord Med 26(4):384–389

    PubMed  Google Scholar 

  46. 46.

    Jaffe LF, Poo M-M (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209:115–127

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Kralj AR, Bajd T (1989) Functional electrical stimulation: standing and walking after spinal cord injury. CRC Press, Florida

    Google Scholar 

  48. 48.

    Kralj A, Bajd T, Turk R (1989) Use of functional electrical stimulation in the rehabilitation of patients with incomplete spinal injury. J Biomed Eng 11(2):96–102

    PubMed  Article  Google Scholar 

  49. 49.

    Kwon BK, Borisoff JF, Tetzlaff W (2002) Molecular targets for therapeutic intervention after spinal cord injury. Mol Interv 2:244–258

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Liberson WT, Holmquest HJ, Scott D et al (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101

    PubMed  CAS  Google Scholar 

  51. 51.

    Liu Y, Himes BT, Murray M et al (2002) Grafts of BDNF-producing fibroblasts rescue axotomised rubrospinal neurons and prevent their atrophy. Exp Neurol 178:150–164

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Lu J, Waite P (1999) Advances in spinal cord regeneration. Spine 24(9):926–930

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Lu P, Yang H, Jones LL et al (2004) Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24:6402–6409

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Mackay-Sim A (2005) Olfactory ensheathing cells and spinal cord repair. Keio J Med 54(1):8–14

    PubMed  Article  Google Scholar 

  55. 55.

    McCaig CD (1986) Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J Physiol 375:55–69

    PubMed  CAS  Google Scholar 

  56. 56.

    McCaig CD, Erskine L (1996) Nerve growth and nerve guidance in a physiological electrical field. In: McCaig CD (ed) Nerve growth and guidance. Portland Press Ltd, London, pp 151–170

    Google Scholar 

  57. 57.

    McCaig CD, Sangster L, Stewart R (2000) Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Dev Dyn 217:299–308

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Moriarty LJ, Borgens RB (2001) An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. J Neurocytol 30(1):45–57

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Mulcahey MJ, Betz RR, Kozin SH et al (2004) Implantation of the Freehand system during initial rehabilitation using minimally invasive technique. Spinal Cord 42(3):146–155

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Muller-Putz GR, SchererR Pfurtscheller G et al (2005) EEG based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 381:169–174

    Article  CAS  Google Scholar 

  61. 61.

    Musallam S, Corneil BD, Scherberger H et al (2004) Cognitive control signals for neural prosthetics. Science 305:258–262

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Nashmi R, Fehlings MG (2001) Mechanism of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage gated potassium channels. Brain Res 38(1–2):165–191

    CAS  Google Scholar 

  63. 63.

    NeuroControl exit leaves holes in spinal injury market. Neurotech Business Report. Available at Accessed 15 Feb 2008

  64. 64.

    Patel M, Poo M-M (1982) Orientation of neurite growth by extracellular electric fields. J Neuro Sci 2:483–496

    CAS  Google Scholar 

  65. 65.

    Pfurtscheller G, Muller GR, Pfurtscheller J et al (2003) ‘Thought’ control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351(1):33–36

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Politis MJ, Zanakis MF (1989) The short term effects of delayed application of electric fields in the damaged rodent spinal cord. Neurosurgery 25(1):71–75

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Popovic MR, Popovic DB, Keller T (2002) Neuroprostheses for grasping. Neurol Res 24:443–452

    PubMed  Article  Google Scholar 

  68. 68.

    Qian T, Guo X, Levi AD et al (2005) High dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord 43:199–203

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Ragnarsson KT, Pollack S, WJr O’Daniel (1988) Clinical evaluation of computerized functional electrical stimulation after spinal cord injury:a multicenter pilot study. Arch Phys Med Rehabil 69(9):672–677

    PubMed  CAS  Google Scholar 

  70. 70.

    Ragnarsson KT, Pollack SF, Twist D (1991) Lower limb endurance exercise after spinal cord injury: implications for health and functional ambulation. J Neurol Rehabil 5:37–48

    Google Scholar 

  71. 71.

    Ramon Y, Cajal S (1928) Degeneration and regeneration of the nervous system. In: May RM (ed) Oxford University Press, London

  72. 72.

    Rattay F, Resatz S, Dimitrijevic MR et al (2003) Mechanisms of electrical stimulations with neural prosthesis. Neuromodulation 6(1):42–56

    Article  Google Scholar 

  73. 73.

    Rovainen CM (1976) Regeneration of Muller and Mauthner axons after spinal transaction in larval lampreys. J Comp Neurol 168(4):545–554

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Sadowsky CL (2001) Electrical stimulation in spinal cord injury. Neurorehabilitation 16:165–169

    PubMed  CAS  Google Scholar 

  75. 75.

    Saigal R, Renzi C, Mushahwar VK (2004) Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 12(4):430–440

    PubMed  Article  Google Scholar 

  76. 76.

    Schnell L, Schneider R, Kolbeck R et al (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after spinal cord lesion. Nature 367:170–173

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Schwab ME, Kapfhammer JP, Bandtlow CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16:565–595

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Shapiro S, Borgens RB, Pascuzzi R et al (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10

    PubMed  Article  Google Scholar 

  79. 79.

    Shen NJ, Wang YT, Lin QB et al (2005) Using methylprednisolone to supplement direct current electrical field in promoting spinal cord regeneration. J Reconstr Microsurg 21:251–255

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Shi R, Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29:633–643

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Shi R, Asano T, Wining NC et al (2000) Control of membrane sealing in injured mammalian spinal cord axons. J Neurophysiol 84:1762–1769

    Google Scholar 

  82. 82.

    Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic patterns. Dev Dyn 202:101–114

    PubMed  CAS  Google Scholar 

  83. 83.

    Short DJ, Masry El WS, Jones PW (2000) High dose methylprednisolone in the management of acute spinal cord injury––a systematic review from a clinical perspective. Spinal Cord 38:273–286

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Miller JH, Silver J (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Simcox S, Davis G, Barriskill A et al (2004) A portable, 8-channel transcutaneous stimulator for paraplegic muscle training and mobility–a technical note. JRRD 41(1):41–52

    Article  Google Scholar 

  86. 86.

    Snoek GJ, IJzerman MJ, in’t Groen FA et al (2000) Uses of the NESS Handmaster to restore handfunction in tetraplegia: clinical experience in ten patients. Spinal Cord 38(4):244–249

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Strautman AF, Cook RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electric fields. J Neurol Sci 10:3564–3575

    CAS  Google Scholar 

  88. 88.

    Tatagiba M, Brosamle C, Schwab ME (1997) Regeneration of injured axons in the adult mammalian central nervous system. Neurosurgery 40(3):541–547

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Taylor PN, Esnouf J, Hobby J (2002) The functional impact of the freehand system on tetraplegics hand function. Spinal Cord 40(11):560–566

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Uzman BG, Snyder DS, Villegas GM (1989) Status of peripheral nerve regeneration. In: Seil F (ed) Neural regeneration and transplantation. Alan R LissInc, New York, pp 15–28

    Google Scholar 

  91. 91.

    Wallace MC, Tator CH, Gentles WM (1987) Effect of alternating current stimulation of the spinal cord on recovery from acute spinal cord injury in rats. Surg Neurol 28(4):269–276

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Wallace MC, Tator CH, Piper I (1987) Recovery of spinal cord function induced by direct current stimulation of the injured rat spinal cord. Neurosurg 20(6):878–884

    Article  CAS  Google Scholar 

  93. 93.

    Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cords. Science 206(4416):344–347

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Wood MR, Cohen MJ (1981) Synaptic regeneration and glial reactions in the transected spinal cord of the lamprey. J Neurocytol 10(1):57–79

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11:13–22

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Samar Hamid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamid, S., Hayek, R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17, 1256–1269 (2008).

Download citation


  • Spinal cord injury
  • Oscillating field stimulation
  • Functional electrical stimulation
  • Axonal regeneration
  • Advances in spinal cord research