Anulus fibrosus tension inhibits degenerative structural changes in lamellar collagen

Abstract

Mechanical stress is one of the risk factors believed to influence intervertebral disc degeneration. Animal models have shown that certain regimes of compressive loading can induce a cascade of biological effects that ultimately results in cellular and structural changes in the disc. It has been proposed that both cell-mediated breakdown of collagen and the compromised stability of collagen with loss of anular tension could result in degradation of lamellae in the anulus fibrosus (AF). To determine whether this may be important in the AF, we subjected entire rings of de-cellularized AF tissue to MMP-1 digestion with or without tension. Biomechanical testing found trends of decreasing strength and stiffness when tissues were digested without tension compared with those with tension. To determine the physiologic significance of tissue level tension in the AF, we used an established in vivo murine model to apply a disc compression insult known to cause degeneration. Afterward, that motion segment was placed in fixed-angle bending to impose tissue level tension on part of the AF and compression on the contralateral side. We found that the AF on the convex side of bending retained a healthy lamellar appearance, while the AF on the concave side resembled tissues that had undergone degeneration by loading alone. Varying the time of onset and duration of bending revealed that even a brief duration applied immediately after cessation of compression was beneficial to AF structure on the convex side of bending. Our results suggest that both cell-mediated events and cell-independent mechanisms may contribute to the protective effect of tissue level tension in the AF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    An HS, Anderson PA, Haughton VM, Iatridis JC, Kang JD, Lotz JC et al (2004) Introduction: disc degeneration: summary. Spine 29:2677–2678. doi:10.1097/01.brs.0000147573.88916.c6

    PubMed  Article  Google Scholar 

  2. 2.

    Anderson DG, Izzo MW, Hall DJ, Vaccaro AR, Hilibrand A, Arnold W et al (2002) Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine 27:1291–1296. doi:10.1097/00007632-200206150-00009

    PubMed  Article  Google Scholar 

  3. 3.

    Ariga K, Yonenobu K, Nakase T, Kaneko M, Okuda S, Uchiyama Y et al (2001) Localization of cathepsins D, K, and L in degenerated human intervertebral discs. Spine 26:2666–2672. doi:10.1097/00007632-200112150-00007

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Bass EC, Wistrom EV, Diederich CJ, Nau WH, Pellegrino R, Ruberti J et al (2004) Heat-induced changes in porcine annulus fibrosus biomechanics. J Biomech 37:233–240. doi:10.1016/j.jbiomech.2003.07.002

    PubMed  Article  Google Scholar 

  5. 5.

    Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    PubMed  CAS  Google Scholar 

  6. 6.

    Budde B, Blumbach K, Ylostalo J, Zaucke F, Ehlen HW, Wagener R et al (2005) Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol Cell Biol 25:10465–10478. doi:10.1128/MCB.25.23.10465-10478.2005

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Ching CT, Chow DH, Yao FY, Holmes AD (2003) The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model. Clin Biomech (Bristol, Avon) 18:182–189. doi:10.1016/S0268-0033(02)00188-2

    Article  Google Scholar 

  8. 8.

    Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, Iatridis JC (2007) Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J Biomech 40:2457–2466. doi:10.1016/j.jbiomech.2006.11.006

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Court C, Colliou OK, Chin JR, Liebenberg E, Bradford DS, Lotz JC (2001) The effect of static in vivo bending on the murine intervertebral disc. Spine J 1:239–245. doi:10.1016/S1529-9430(01)00056-0

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Dominguez LJ, Barbagallo M, Moro L (2005) Collagen overglycosylation: a biochemical feature that may contribute to bone quality. Biochem Biophys Res Commun 330:1–4. doi:10.1016/j.bbrc.2005.02.050

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Fujita K, Nakagawa T, Hirabayashi K, Nagai Y (1993) Neutral proteinases in human intervertebral disc. Role in degeneration and probable origin. Spine 18:1766–1773. doi:10.1097/00007632-199310000-00009

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Gruber HE, Ingram JA, Hanley EN Jr (2005) Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration. Biotech Histochem 80:157–162. doi:10.1080/10520290500387607

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Guehring T, Omlor GW, Lorenz H, Bertram H, Steck E, Richter W et al (2005) Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration—an in vivo animal study. Spine 30:2510–2515. doi:10.1097/01.brs.0000186591.17114.e9

    PubMed  Article  Google Scholar 

  14. 14.

    Hsieh AH, Lotz JC (2003) Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs. Spine 28:1781–1788. doi:10.1097/01.BRS.0000083282.82244.F3

    PubMed  Article  Google Scholar 

  15. 15.

    Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002. doi:10.1097/00007632-199905150-00013

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514

    PubMed  CAS  Google Scholar 

  17. 17.

    Konttinen YT, Kaapa E, Hukkanen M, Gu XH, Takagi M, Santavirta S et al (1999) Cathepsin G in degenerating and healthy discal tissue. Clin Exp Rheumatol 17:197–204

    PubMed  CAS  Google Scholar 

  18. 18.

    Kroeber M, Unglaub F, Guehring T, Nerlich A, Hadi T, Lotz J et al (2005) Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model. Spine 30:181–187. doi:10.1097/01.brs.0000150487.17562.b1

    PubMed  Article  Google Scholar 

  19. 19.

    Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477–1483. doi:10.1097/00007632-200006150-00005

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506. doi:10.1097/00007632-199812010-00004

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453

    PubMed  CAS  Google Scholar 

  22. 22.

    MacLean JJ, Lee CR, Grad S, Ito K, Alini M, Iatridis JC (2003) Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine 28:973–981. doi:10.1097/00007632-200305150-00004

    PubMed  Article  Google Scholar 

  23. 23.

    MacLean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22:1193–1200. doi:10.1016/j.orthres.2004.04.004

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23:1120–1127. doi:10.1016/j.orthres.2005.01.020

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Meakin JR, Hukins DW (2000) Effect of removing the nucleus pulposus on the deformation of the annulus fibrosus during compression of the intervertebral disc. J Biomech 33:575–580. doi:10.1016/S0021-9290(99)00215-8

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Meakin JR, Redpath TW, Hukins DW (2001) The effect of partial removal of the nucleus pulposus from the intervertebral disc on the response of the human annulus fibrosus to compression. Clin Biomech (Bristol, Avon) 16:121–128. doi:10.1016/S0268-0033(00)00075-9

    Article  CAS  Google Scholar 

  27. 27.

    Miles CA, Ghelashvili M (1999) Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J 76:3243–3252

    PubMed  CAS  Google Scholar 

  28. 28.

    Minond D, Lauer-Fields JL, Nagase H, Fields GB (2004) Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability. Biochemistry 43:11474–11481. doi:10.1021/bi048938i

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Miura T, Panjabi MM, Cripton PA (2002) A method to simulate in vivo cervical spine kinematics using in vitro compressive preload. Spine 27:43–48. doi:10.1097/00007632-200201010-00011

    PubMed  Article  Google Scholar 

  30. 30.

    Nabeshima Y, Grood ES, Sakurai A, Herman JH (1996) Uniaxial tension inhibits tendon collagen degradation by collagenase in vitro. J Orthop Res 14:123–130. doi:10.1002/jor.1100140120

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. doi:10.1074/jbc.274.31.21491

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Niosi CA, Oxland TR (2004) Degenerative mechanics of the lumbar spine. Spine J 4:202S–208S. doi:10.1016/j.spinee.2004.07.013

    PubMed  Article  Google Scholar 

  33. 33.

    O’Connell GD, Vresilovic EJ, Elliott DM (2007) Comparison of animals used in disc research to human lumbar disc geometry. Spine 32:328–333. doi:10.1097/01.brs.0000253961.40910.c1

    PubMed  Article  Google Scholar 

  34. 34.

    Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW et al (2006) Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration—an in vivo study on the New Zealand white rabbit. J Orthop Res 24:385–392. doi:10.1002/jor.20055

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ono A, Harata S, Takagaki K, Endo M (1998) Proteoglycans in the nucleus pulposus of canine intervertebral discs after chondroitinase ABC treatment. J Spinal Disord 11:253–260. doi:10.1097/00002517-199806000-00014

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Ordway NR, Seymour RJ, Donelson RG, Hojnowski LS, Edwards WT (1999) Cervical flexion, extension, protrusion, and retraction. A radiographic segmental analysis. Spine 24:240–247. doi:10.1097/00007632-199902010-00008

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Palmer EI, Lotz JC (2004) The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res 22:164–169. doi:10.1016/S0736-0266(03)00161-X

    PubMed  Article  Google Scholar 

  38. 38.

    Palmer EI, Lotz JC (2004) The time-dependent role of cytokines in mechanically induced disc degeneration. In: Transactions of the 50th annual meeting of the Orthopaedic Research Society. San Francisco, p 128

  39. 39.

    Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res 5:198–205. doi:10.1002/jor.1100050206

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Reiser KM, Rocha-Mendoza I, Wang M, Yankelevich DR, Bratton C, Knoesen A et al (2004) Polarization-modulated second harmonic generation imaging: method for quantitative assessment of disorganization in anulus. Conf Proc IEEE Eng Med Biol Soc 7:4982–4985

    PubMed  CAS  Google Scholar 

  41. 41.

    Reiser KM, Bratton C, Yankelevich DR, Knoesen A, Rocha-Mendoza I, Lotz JC (2007) Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: Comparison with morphometric analysis. J Biomed Opt 12:064019. doi:10.1117/1.2812631

    PubMed  Article  Google Scholar 

  42. 42.

    Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013. doi:10.1097/00007632-200012010-00007

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Ruberti JW, Hallab NJ (2005) Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem Biophys Res Commun 336:483–489. doi:10.1016/j.bbrc.2005.08.128

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Sasaki M, Takahashi T, Miyahara K, Hirose T (2001) Effects of chondroitinase ABC on intradiscal pressure in sheep: an in vivo study. Spine 26:463–468. doi:10.1097/00007632-200103010-00008

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG et al (2005) Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 5:14–23. doi:10.1016/j.spinee.2004.05.251

    PubMed  Article  Google Scholar 

  46. 46.

    Spenciner D, Greene D, Paiva J, Palumbo M, Crisco J (2006) The multidirectional bending properties of the human lumbar intervertebral disc. Spine J 6:248–257. doi:10.1016/j.spinee.2005.08.020

    PubMed  Article  Google Scholar 

  47. 47.

    Steffen T, Rubin RK, Baramki HG, Antoniou J, Marchesi D, Aebi M (1997) A new technique for measuring lumbar segmental motion in vivo. Method, accuracy, and preliminary results. Spine 22:156–166. doi:10.1097/00007632-199701150-00006

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Stoller P, Reiser KM, Celliers PM, Rubenchik AM (2002) Polarization-modulated second harmonic generation in collagen. Biophys J 82:3330–3342

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Stoller P, Celliers PM, Reiser KM, Rubenchik AM (2003) Quantitative second-harmonic generation microscopy in collagen. Appl Opt 42:5209–5219. doi:10.1364/AO.42.005209

    PubMed  Article  Google Scholar 

  50. 50.

    Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326(Pt 1):235–241

    PubMed  CAS  Google Scholar 

  51. 51.

    Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM (2001) The relationship between disc degeneration and flexibility of the lumbar spine. Spine J 1:47–56. doi:10.1016/S1529-9430(01)00006-7

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Urban JP, McMullin JF (1988) Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine 13:179–187. doi:10.1097/00007632-198802000-00009

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Walsh AJ, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337. doi:10.1016/S0021-9290(03)00290-2

    PubMed  Article  Google Scholar 

  54. 54.

    Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE award competition in basic science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320. doi:10.1007/s00586-002-0472-0

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine 30:2621–2630. doi:10.1097/01.brs.0000188203.71182.c0

    PubMed  Article  Google Scholar 

Download references

Acknowledgment

Financial support for this study was received from the National Institutes of Health AR48033 (A. H. Hsieh) and AR46173 (J. C. Lotz).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam H. Hsieh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lotz, J.C., Hadi, T., Bratton, C. et al. Anulus fibrosus tension inhibits degenerative structural changes in lamellar collagen. Eur Spine J 17, 1149 (2008). https://doi.org/10.1007/s00586-008-0721-y

Download citation

Keywords

  • Intervertebral disc
  • Mechanical stress
  • Anulus fibrosus
  • Biomechanics
  • Animal model