Abstract
Ossification of the spinal ligaments (OSL) is a pathologic condition that causes ectopic bone formation and subsequently results in various degrees of neurological deficit, but the etiology of OSL remains almost unknown. Some systemic hormones, such as 1,25-dihydroxyvitamin D, parathyroid hormone (PTH), insulin and leptin, and local growth factors, such as transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP), have been studied and are thought to be involved in the initiation and development of OSL. This review article summarizes these studies, delineates the possible mechanisms, and puts forward doubts and new questions. The related findings from studies of genes and target cells in the ligament of OSL are also discussed. Although these findings may be helpful in understanding the pathogenesis of OSL, much more research needs to be conducted in order to investigate the nature of OSL.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Adams JE, Davies M (1977) Paravertebral and peripheral ligamentous ossification: an unusual association of hypoparathyroidism. Postgrad Med J 53:167–172
Akune T, Ogata N, Seichi A, Ohnishi I, Nakamura K, Kawaguchi H (2001) Insulin secretory response is positively associated with the extent of ossification of the posterior longitudinal ligament of the spine. J Bone Joint Surg Am 83:1537–1544
Altomonte L, Zoli A, Mirone L, Marchese G, Scolieri P, Barini A, Magaro M (1992) Growth hormone secretion in diffuse idiopathic skeletal hyperostosis. Ann Ital Med Int 7:30–33
Bobacz K, Ullrich R, Amoyo L, Erlacher L, Smolen JS, Graninger WB (2006) Stimulatory effects of distinct members of the bone morphogenetic protein family on ligament fibroblasts. Ann Rheum Dis 65:169–177
Bussiere JL, Ristori JM, Miravet L, Piat C, Soubrier M, Bardin T (1993) Vitamin-resistant hypophosphatemic rickets and spinal cord compression: apropos of 2 cases. Rev Rhum Ed Fr 60:64–68
Chen NX, Moe SM (2003) Arterial calcification in diabetes. Curr Diab Rep 3:28–32
Choi S, Lee SH, Lee JY, Choi WG, Choi WC, Choi G, Jung B, Lee SC (2005) Factors affecting prognosis of patients who underwent corpectomy and fusion for treatment of cervical ossification of the posterior longitudinal ligament: analysis of 47 patients. J Spinal Disord Tech 18:309–314
Coaccioli S, Fatati G, Di Cato L, Marioli D, Patucchi E, Pizzuti C, Ponteggia M, Puxeddu A (2000) Diffuse idiopathic skeletal hyperostosis in diabetes mellitus, impaired glucose tolerance and obesity. Panminerva Med 42:247–251
Daragon A, Mejjad O, Czernichow P, Louvel JP, Vittecoq O, Durr A, Le Loet X (1995) Vertebral hyperostosis and diabetes mellitus: a case-control study. Ann Rheum Dis 54:375–378
Denko CW, Boja B, Malemud CJ (2002) Growth hormone and insulin-like growth factor-I in symptomatic and asymptomatic patients with diffuse idiopathic skeletal hyperostosis (DISH). Front Biosci 7:37–43
Denko CW, Boja B, Moskowitz RW (1994) Growth promoting peptides in osteoarthritis and diffuse idiopathic skeletal hyperostosis–insulin, insulin-like growth factor-I, growth hormone. J Rheumatol 21:1725–1730
Denko CW, Malemud CJ (2005) Role of the growth hormone/insulin-like growth factor-1 paracrine axis in rheumatic diseases. Semin Arthritis Rheum 35:24–34
Denko CW, Malemud CJ (2006) Body mass index and blood glucose: correlations with serum insulin, growth hormone, and insulin-like growth factor-1 levels in patients with diffuse idiopathic skeletal hyperostosis (DISH). Rheumatol Int 26:292–297
DiGiovanna JJ, Helfgott RK, Gerber LH, Peck GL (1986) Extraspinal tendon and ligament calcification associated with long-term therapy with etretinate. N Engl J Med 315:1177–1182
Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504
Feng JQ, Harris MA, Ghosh-Choudhury N, Feng M, Mundy GR, Harris SE (1994) Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim Biophys Acta 1218:221–224
Feng JQ, Chen D, Cooney AJ, Tsai MJ, Harris MA, Tsai SY, Feng M, Mundy GR, Harris SE (1995) The mouse bone morphogenetic protein-4 gene. Analysis of promoter utilization in fetal rat calvarial osteoblasts and regulation by COUP-TFI orphan receptor. J Biol Chem 270:28364–28373
Furushima K, Shimo-Onoda K, Maeda S, Nobukuni T, Ikari K, Koga H, Komiya S, Nakajima T, Harata S, Inoue I (2002) Large-scale screening for candidate genes of ossification of the posterior longitudinal ligament of the spine. J Bone Miner Res 17:128–137
Goto K, Yamazaki M, Tagawa M, Goto S, Kon T, Moriya H, Fujimura S (1998) Involvement of insulin-like growth factor I in development of ossification of the posterior longitudinal ligament of the spine. Calcif Tissue Int 62:158–165
Harata S, Kawagishi T (1979) The ossification of the posterior longitudinal ligament of the cervical spine in diabetes. In: Japanese Ministry of Public Health and Welfare (ed) Investigation committee report on the ossification of the spinal ligaments of the Japanese ministry of public health and welfare in 1978. Tokyo, pp 27–28
Hayashi K, Ishidou Y, Yonemori K, Nagamine T, Origuchi N, Maeda S, Imamura T, Yoshida H, Sampath TK, ten Dijke P, Sakou T (1997) Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone 21:23–30
Highman JH, Sanderson PH, Sutcliffe MM (1970) Vitamin-D-resistant osteomalacia as a cause of cord compression. Q J Med 39:529–537
Hirakawa H, Kusumi T, Nitobe T, Ueyama K, Tanaka M, Kudo H, Toh S, Harata S (2004) An immunohistochemical evaluation of extracellular matrix components in the spinal posterior longitudinal ligament and intervertebral disc of the tiptoe walking mouse. J Orthop Sci 9:591–597
Honda H (1983) Histopathological study of aging of the posterior portion of human cervical vertebral bodies and discs-with special reference to the early ossification of the posterior longitudinal ligament. Nippon Seikeigeka Gakkai Zasshi 57:1881–1893
Horikoshi T, Maeda K, Kawaguchi Y, Chiba K, Mori K, Koshizuka Y, Hirabayashi S, Sugimori K, Matsumoto M, Kawaguchi H, Takahashi M, Inoue H, Kimura T, Matsusue Y, Inoue I, Baba H, Nakamura K, Ikegawa S (2006) A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum Genet 119:611–616
Hoshi K, Amizuka N, Sakou T, Kurokawa T, Ozawa H (1997) Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: morphological examinations for ossification of spinal ligaments. Bone 21:155–162
Ikegawa S, Kurokawa T, Hizuka N, Hoshino Y, Ohnishi I, Shizume K (1993) Increase of serum growth hormone-binding protein in patients with ossification of the posterior longitudinal ligament of the spine. Spine 18:1757–1760
Imamura T, Sakou T, Matsunaga S, Taketomi E, Ishido Y, Yoshida H (1995) Histochemical and immunohistochemical study on the skin of patients with ossification of the posterior longitudinal ligament in the cervical spine. In Vivo 9:167–171
Inaba K, Matsunaga S, Ishidou Y, Imamura T, Yoshida H (1996) Effect of transforming growth factor-β on fibroblasts in ossification of the posterior longitudinal ligament. In Vivo 10:445–449
Inaba T, Ishibashi S, Gotoda T, Kawamura M, Morino N, Nojima Y, Kawakami M, Yazaki Y, Yamada N (1996) Enhanced expression of platelet-derived growth factor-β receptor by high glucose: involvement of platelet-derived growth factor in diabetic angiopathy. Diabetes 45:507–512
Inamasu J, Guiot BH, Sachs DC (2006) Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology and natural history. Neurosurgery 58:1027–1039
Ishida Y, (1988) Studies on induction mechanism of ossification of the posterior longitudinal of the spine:especially on the cultured cells from the human spinal ligament. J Jpn Orthop Assoc 62:1019–1027 (in Japanese)
Ishida Y, Kawai S (1993) Characterization of cultured cells derived from ossification of the posterior longitudinal ligament of the spine. Bone 14:85–91
Ishida Y, Kawai S (1993) Effects of bone-seeking hormones on DNA synthesis, cyclic AMP level, and alkaline phosphatase activity in cultured cells from human posterior longitudinal ligament of the spine. J Bone Miner Res 8:1291–1300
Ishidou Y, Tokunaga M, Murata F, Yoshida H, Sakou T (1995) Expression of decorin mRNA in the skin of patients with ossification of the posterior longitudinal ligament. In Vivo 9:469–474
Ishizawa N (1992) Experimental study of hyperostosis induced by hypervitaminosis A. J Jpn Orthop Assoc 66:919–930 (in Japanese)
Julkunen H, Karava R, Viljanen V (1966) Hyperostosis of the spine in diabetes mellitus and acromegaly. Diabetologia 2:123–126
Julkunen H, Pyorala K, Lehtovirta E (1968) Hyperostosis of the spine in relation to age and hyperglycemia in men aged 30–69. Ann Med Intern Fenn 57:1–7
Kamiya M, Harada A, Mizuno M, Iwata H, Yamada Y (2001) Association between a polymorphism of the transforming growth factor-β1 gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine 26:1264–1266
Kawaguchi H, Kurokawa T, Hoshino Y, Kawahara H, Ogata E, Matsumoto T (1992) Immunohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-β in the ossification of the posterior longitudinal ligament of the cervical spine. Spine 17(Suppl 3):S33–S36
Kawaguchi Y, Furushima K, Sugimori K, Inoue I, Kimura T (2003) Association between polymorphism of the transforming growth factor-β1 gene with the radiologic characteristic and ossification of the posterior longitudinal ligament. Spine 28:1424–1426
Kiss C, Szilagyi M, Paksy A, Poor G (2002) Risk factors for diffuse idiopathic skeletal hyperostosis: a case-control study. Rheumatology 41:27–30
Kobashi G, Washio M, Okamoto K, Sasaki S, Yokoyama T, Miyake Y, Sakamoto N, Ohta K, Inaba Y, Tanaka H (2004) High body mass index after age 20 and diabetes mellitus are independent risk factors for ossification of the posterior longitudinal ligament of the spine in Japanese subjects: a case-control study in multiple hospitals. Spine 29:1006–1010
Kodama T, Matsunaga S, Taketomi E, Sakou T (1998) Retinoid and bone metabolic marker in ossification of the posterior longitudinal ligament. In Vivo 12:339–344
Koga H, Hayashi K, Taketomi E, Matsunaga S, Yashiki S, Fujiyoshi T, Sonoda S, Sakou T (1996) Restriction fragment length polymorphism of genes of the α2(XI) collagen, bone morphogenetic protein-2, alkaline phosphatase, and tumor necrosis factor-α among patients with ossification of posterior longitudinal ligament and controls from the Japanese population. Spine 21:469–473
Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED (1998) High glucose-induced transforming growth factor β1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101:160–169
Kon T, Yamazaki M, Tagawa M, Goto S, Terakado A, Moriya H, Fujimura S (1997) Bone morphogenetic protein-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int 60:291–296
Kosaka T, Imakiire A, Mizuno F, Yamamoto K (2000) Activation of nuclear factor kappaB at the onset of ossification of the spinal ligaments. J Orthop Sci 5:572–578
Lam S, van der Geest RN, Verhagen NA, van Nieuwenhoven FA, Blom IE, Aten J, Goldschmeding R, Daha MR, van Kooten C (2003) Connective tissue growth factor and igf-I are produced by human renal fibroblasts and cooperate in the induction of collagen production by high glucose. Diabetes 52:2975–2983
Lam S, Verhagen NA, Strutz F, van der Pijl JW, Daha MR, van Kooten C (2003) Glucose-induced fibronectin and collagen type III expression in renal fibroblasts can occur independent of TGF-β1. Kidney Int 63:878–888
Lee CY, Liu X, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP (2004) The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate ligament. Matrix Biol 23:323–329
Littlejohn GO, Smythe HA (1981) Marked hyperinsulinemia after glucose challenge in patients with diffuse idiopathic skeletal hyperostosis. J Rheumatol 8:965–968
Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P (1993) Function of retinoic acid receptor gamma in the mouse. Cell 73:643–658
Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, Gansmuller A, Chambon P (1994) Function of the retinoic acid receptors (RARs) during development (I): craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748
Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SL (1997) Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 15:18–23
Mata S, Fortin PR, Fitzcharles MA, Starr MR, Joseph L, Watts CS, Gore B, Rosenberg E, Chhem RK, Esdaile JM (1997) A controlled study of diffuse idiopathic skeletal hyperostosis: clinical features and functional status. Medicine 76:104–117
Mimatsu K, Kishi S, Hashizume Y (1997) Experimental chronic compression on the spinal cord of the rabbit by ectopic bone formation in the ligamentum flavum with bone morphogenetic protein. Spinal Cord 35:740–746
Miyamoto S, Takaoka K, Yonenobu K, Ono K (1992) Ossification of the ligamentum flavum induced by bone morphogenetic protein: an experimental study in mice. J Bone Joint Surg Br 74:279–283
Moon SH, Park SR, Kim H, Kwon UH, Kim KH, Kim HS, Lee HM (2004) Biologic modification of ligamentum flavum cells by marker gene transfer and recombinant human bone morphogenetic protein-2. Spine 29:960–965
Morisu M (1994) Influence of foods on the posterior longitudinal ligament of the cervical spine and serum sex hormones. J Jpn Orthop Assoc 68:1056–1067 (in Japanese)
Murakami H (1988) Experimental study on ossification of spinal ligaments in the rabbit under influence of bone morphogenetic protein. J Jpn Orthop Assoc 62:1211–1220 (in Japanese)
Nagasawa H, Takahashi S, Kobayashi A, Tazawa H, Tashima Y, Sato K (2005) Effect of retinoic acid on murine preosteoblastic MC3T3-E1 cells. J Nutr Sci Vitaminol 51:311–318
Nakase T, Ariga K, Yonenobu K, Tsumaki N, Luyten FP, Mukai Y, Sato I, Yoshikawa H (2001) Activation and localization of cartilage-derived morphogenetic protein-1 at the site of ossification of the ligamentum flavum. Eur Spine J 10:289–294
Numasawa T, Koga H, Ueyama K, Maeda S, Sakou T, Harata S, Leppert M, Inoue I (1999) Human retinoic X receptor β: complete genomic sequence and mutation search for ossification of posterior longitudinal ligament of the spine. J Bone Miner Res 14:500–508
Ogata N, Koshizuka Y, Miura T, Iwasaki M, Hosoi T, Shiraki M, Seichi A, Nakamura K, Kawaguchi H (2002) Association of bone metabolism regulatory factor gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity. Spine 27:1765–1771
Ohtsuka K, Yanagihara M (1987) Epidemiological study of ossification of the spinal ligaments. Orthop MOOK 50:12–25 (in Japanese)
Okada Y, Motegi M, Fujita L, Furufu T, Yuji M, Tabe S (1987) Association of ossification of the spinal ligaments and sex hormones. Orthop MOOK 50:152–163 (in Japanese)
Okano T, Ishidou Y, Kato M, Imamura T, Yonemori K, Origuchi N, Matsunaga S, Yoshida H, ten Dijke P, Sakou T (1997) Orthotopic ossification of the spinal ligaments of Zucker fatty rats: a possible animal model for ossification of the human posterior longitudinal ligament. J Orthop Res 15:820–829
Okazaki T, Takuwa Y, Yamamoto M, Matsumoto T, Igarashi T, Kurokawa T, Ogata E (1984) Ossification of the paravertebral ligaments: a frequent complication of hypoparathyroidism. Metabolism 33:710–713
Ono K, Yonenobu K, Miyamoto S, Okada K (1999) Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum. Clin Orthop 359:18–26
Park JB, Chang H, Lee JK (2001) Quantitative analysis of transforming growth factor-β1 in ligamentum flavum of lumbar spinal stenosis and disc herniation. Spine 26:E492–E495
Pennes DR, Martel W, Ellis CN (1985) Retinoid-induced ossification of the posterior longitudinal ligament. Skeletal Radiol 14:191–193
Sakou T, Taketomi E, Matsunaga S, Yamaguchi M, Sonoda S, Yashiki S (1991) Genetic study of ossification of the posterior longitudinal ligament in the cervical spine with human leukocyte antigen haplotype. Spine 16:1249–1252
Scarpa R, De Brasi D, Pivonello R, Marzullo P, Manguso F, Sodano A, Oriente P, Lombardi G, Colao A (2004) Acromegalic axial arthropathy: a clinical case-control study. J Clin Endocrinol Metab 89:598–603
Schmidt CC, Georgescu HI, Kwoh CK, Blomstrom GL, Engle CP, Larkin LA, Evans CH, Woo SL (1995) Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res 13:184–190
Seichi A, Hoshino Y, Ohnishi I, Kurokawa T (1992) The role of calcium metabolism abnormalities in the development of ossification of the posterior longitudinal ligament of the cervical spine. Spine 17(Suppl 3):S30–S32
Sencan D, Elden H, Nacitarhan V, Sencan M, Kaptanoglu E (2005) The prevalence of diffuse idiopathic skeletal hyperostosis in patients with diabetes mellitus. Rheumatol Int 25:518–521
Shiigi E, Sugiyama T, Tanaka H, Murata H, Shirakura Y, Kawai S (2001) Possible involvement of vitamin D receptor gene polymorphism in male patients with ossification of spinal ligaments. J Bone Miner Metab 19:308–311
Shingyouchi Y, Nagahama A, Niida M (1996) Ligamentous ossification of the cervical spine in the late middle-aged Japanese men. Its relation to body mass index and glucose metabolism. Spine 21:2474–2478
Shirakura Y, Sugiyama T, Tanaka H, Taguchi T, Kawai S (2000) Hyperleptinemia in female patients with ossification of spinal ligaments. Biochem Biophys Res Commun 267:752–755
Soehle M, Casey AT (2002) Cervical spinal cord compression attributable to a calcified intervertebral disc in a patient with X-linked hypophosphatemic rickets: case report and review of the literature. Neurosurgery 51:239–242
Specchia N, Pagnotta A, Gigante A, Logroscino G, Toesca A (2001) Characterization of cultured human ligamentum flavum cells in lumbar spine stenosis. J Orthop Res 19:294–300
Tahara M, Aiba A, Yamazaki M, Ikeda Y, Goto S, Moriya H, Okawa A (2005) The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphatase gene and leptin receptor gene polymorphisms. Spine 30:877–880
Takuwa Y, Matsumoto T, Kurokawa T, Iizuka M, Hoshino Y, Hata K, Ogata E (1985) Calcium metabolism in paravertebral ligamentous ossification. Acta Endocrinol (Copenh) 109:428–432
Tanaka H, Nagai E, Murata H, Tsubone T, Shirakura Y, Sugiyama T, Taguchi T, Kawai S (2001) Involvement of bone morphogenic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatology 40:1163–1168
Tanno M, Furukawa KI, Ueyama K, Harata S, Motomura S (2003) Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33:475–484
Terayama K (1989) Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 14:1184–1191
Tsukamoto N, Maeda T, Miura H, Jingushi S, Hosokawa A, Harimaya K, Higaki H, Kurata K, Iwamoto Y (2006) Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments. J Neurosurg Spine 5:234–242
Velan GJ, Currier BL, Clarke BL, Yaszemski MJ (2001) Ossification of the posterior longitudinal ligament in vitamin D-resistant rickets: case report and review of the literature. Spine 26:590–593
Vezyroglou G, Mitropoulos A, Antoniadis C (1996) A metabolic syndrome in diffuse idiopathic skeletal hyperostosis: a controlled study. J Rheumatol 23:672–676
Vukicevic S, Latin V, Chen P, Batorsky R, Reddi AH, Sampath TK (1994) Localization of osteogenic protein-1 (bone morphogenetic protein-7) during human embryonic development: high affinity binding to basement membranes. Biochem Biophys Res Commun 198:693–700
Wada A (1995) Affinity of estrogen binding in the cultured spinal ligament cells: an in vitro study using cells from spinal ligament ossification patients. J Jpn Orthop Assoc 69:440–449 (in Japanese)
Yamaguchi M (1991) Genetic study on OPLL in the cervical spine with HLA haplotype. J Jpn Orthop Assoc 65:527–535 (in Japanese)
Yamamoto Y, Furukawa K, Ueyama K, Nakanishi T, Takigawa M, Harata S (2002) Possible roles of CTGF/Hcs24 in the initiation and development of ossification of the posterior longitudinal ligament. Spine 27:1852–1857
Yamauchi T, Taketomi E, Matsunaga S, Sakou T (1999) Bone mineral density in patients with ossification of the posterior longitudinal ligament in the cervical spine. J Bone Miner Metab 17:296–300
Yevdokimova NY (2003) High glucose-induced alterations of extracellular matrix of human skin fibroblasts are not dependent on TSP-1-TGFβ1 pathway. J Diabetes Complications 17:355–364
Yonemori K, Imamura T, Ishidou Y, Okano T, Matsunaga S, Yoshida H, Kato M, Sampath TK, Miyazono K, ten Dijke P, Sakou T (1997) Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am J Pathol 150:1335–1347
Yoshizawa T, Takizawa F, Iizawa F, Ishibashi O, Kawashima H, Matsuda A, Endo N, Kawashima H (2004) Homeobox protein MSX2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Mol Cell Biol 24:3460–3472
Yu WD, Panossian V, Hatch JD, Liu SH, Finerman GA (2001) Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop 383:268–281
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, H., Jiang, LS. & Dai, LY. Hormones and growth factors in the pathogenesis of spinal ligament ossification. Eur Spine J 16, 1075–1084 (2007). https://doi.org/10.1007/s00586-007-0356-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00586-007-0356-4