Metal levels in corrosion of spinal implants

Abstract

Corrosion affects spinal instrumentations and may cause local and systemic complications. Diagnosis of corrosion is difficult, and nowadays it is performed almost exclusively by the examination of retrieved instrumentations. We conducted this study to determine whether it is possible to detect corrosion by measuring metal levels on patients with posterior instrumented spinal fusion. Eleven asymptomatic patients, with radiological signs of corrosion of their stainless steel spinal instrumentations, were studied by performing determinations of nickel and chromium in serum and urine. Those levels were compared with the levels of 22 patients with the same kind of instrumentation but without evidence of corrosion and to a control group of 22 volunteers without any metallic implants. Statistical analysis of our results revealed that the patients with spinal implants without radiological signs of corrosion have increased levels of chromium in serum and urine (P < 0.001) compared to volunteers without implants. Corrosion significantly raised metal levels, including nickel and chromium in serum and urine when compared to patients with no radiological signs of corrosion and to volunteers without metallic implants (P < 0.001). Metal levels measured in serum have high sensibility and specificity (area under the ROC curve of 0.981). By combining the levels of nickel and chromium in serum we were able to identify all the cases of corrosion in our series of patients. The results of our study confirm that metal levels in serum and urine are useful in the diagnosis of corrosion of spinal implants and may be helpful in defining the role of corrosion in recently described clinical entities such as late operative site pain or late infection of spinal implants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T, Moriya H (2005) Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Sci 10:200–205

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Aulisa L, di Benedetto A, Vinciguerra A, Lorini G, Tranquilli-Leali P (1982) Corrosion of the Harrington’s instrumentation and biological behaviour of the rod-human spine system. Biomaterials 3:246–248

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Bago J, Ramirez M, Pellise F, Villanueva C (2003) Survivorship analysis of Cotrel–Dubousset instrumentation in idiopathic scoliosis. Eur Spine J 12:435–439

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Barceloux DG (1999) Chromium. J Toxicol Clin Toxicol 37:173–194

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Barceloux DG (1999) Nickel. J Toxicol Clin Toxicol 37:239–258

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Beguiristain J, del Rio J, Duart J, Barroso J, Silva A, Villas C (2006) Corrosion and late infection causing delayed paraparesis after spinal instrumentation. J Pediatr Orthop B 15:320–323

    PubMed  Google Scholar 

  7. 7.

    Clark CE, Shufflebarger HL (1999) Late-developing infection in instrumented idiopathic scoliosis. Spine 24:1909–1912

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Cook S, Asher M, Lai SM, Shobe J (2000) Reoperation after primary posterior instrumentation and fusion for idiopathic scoliosis. Toward defining late operative site pain of unknown cause. Spine 25:463–468

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Doorn PF, Mirra JM, Campbell PA, Amstutz HC (1996) Tissue reaction to metal on metal total hip prostheses. Clin Orthop Relat Res 329:S187–S205

    PubMed  Article  Google Scholar 

  10. 10.

    Dubousset J, Shufflebarger H, Wenger D (1994) Late “infection” with C-D instrumentation. Orthop Trans 18:121

    Google Scholar 

  11. 11.

    Granchi D, Cenni E, Ciapetti G, Savarino L, Stea S, Gamberini S, Gori A, Pizzoferrato A (1998) Cell death induced by metal ions: necrosis or apoptosis? J Mater Sci Mater Med 9:31–37

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Hahn F, Zbinden R, Min K (2005) Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur Spine J 14:783–788

    PubMed  Article  Google Scholar 

  13. 13.

    Hallab N, Merrit K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83-A:428–436

    PubMed  CAS  Google Scholar 

  14. 14.

    Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44:591–610

    PubMed  Google Scholar 

  15. 15.

    Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 80:268–282

    PubMed  CAS  Google Scholar 

  16. 16.

    Jacobs JJ, Roebuck KA, Archibeck M, Hallab NJ, Glant TT (2001) Osteolysis: basic science. Clin Orthop Relat Res 393:71–77

    PubMed  Article  Google Scholar 

  17. 17.

    Jacobs JJ, Skipor AK, Campbell PA, Hallab NJ, Urban RM, Amstutz HC (2004) Can metal levels be used to monitor metal-on-metal hip arthroplasties? J Arthroplasty 19:S59–S65

    Article  Google Scholar 

  18. 18.

    Jacobs JJ, Urban RM, Gilbert JL, Skipor AK, Black J, Jasty M, Galante JO (1995) Local and distant products from modularity. Clin Orthop Relat Res 319:94–105

    PubMed  Google Scholar 

  19. 19.

    Kim YJ, Kassab F, Berven SH, Zurakowski D, Hresko MT, Emans JB, Kasser JR (2005) Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis. Spine 30:923–926

    PubMed  Article  Google Scholar 

  20. 20.

    Kraft CN, Burian B, Diedrich O, Wimmer MA (2001) Implications of orthopedic fretting corrosion particles on skeletal muscle microcirculation. J Mater Sci Mater Med 12:1057–1062

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    MacDonald SJ, Brodner W, Jacobs JJ (2004) A consensus paper on metal ions in metal-on-metal hip arthroplasties. J Arthroplasty 19:S12–S16

    Article  Google Scholar 

  22. 22.

    MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D, Leung F (2003) Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 406:282–296

    PubMed  Article  Google Scholar 

  23. 23.

    Muschik M, Luck W, Schlenzka D (2004) Implant removal for late-developing infection after instrumented posterior spinal fusion for scoliosis: reinstrumentation reduces loss of correction. A retrospective analysis of 45 cases. Eur Spine J 13:645–651

    PubMed  Article  Google Scholar 

  24. 24.

    Richards BR, Emara KM (2001) Delayed infections after posterior TSRH spinal instrumentation for idiopathic scoliosis: revisited. Spine 26:1990–1996

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Takahashi S, Delecrin J, Passuti N (2001) Intraspinal metallosis causing delayed neurologic symptoms after spinal instrumentation surgery. Spine 26:1495–1498

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tezer M, Kuzgun U, Hamzaoglu A, Ozturk C, Kabukcuoglu F, Sirvanci M (2005) Intraspinal metalloma resulting in late paraparesis. Arch Orthop Trauma Surg 125:417–421

    PubMed  Article  Google Scholar 

  27. 27.

    Vieweg U, van Roost D, Wolf HK, Schyma CA, Schramm J (1999) Corrosion on an internal spinal fixator system. Spine 24:946–951

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Waelchli B, Min K, Cathrein P, Boos N (2002) Vertebral body compression fracture after removal of pedicle screws: a report of two cases. Eur Spine J 11:504–506

    PubMed  Article  Google Scholar 

  29. 29.

    Wimmer C, Gluch H (1998) Aseptic loosening after CD instrumentation in the treatment of scoliosis: a report about eight cases. J Spinal Disord 11:440–443

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier del Rio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

del Rio, J., Beguiristain, J. & Duart, J. Metal levels in corrosion of spinal implants. Eur Spine J 16, 1055–1061 (2007). https://doi.org/10.1007/s00586-007-0311-4

Download citation

Keywords

  • Corrosion
  • Spinal implants
  • Metal levels