Biomechanical study of anterior spinal instrumentation configurations

Abstract

The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Belmont P, Polly D, Cuuningham B, Klemme W (2001) The effect of hook pattern and kyphotic angulation on mechanical strength and apical rod strain in a long-segment posterior construct using a synthetic model. Spine 26:627–636

    PubMed  Article  Google Scholar 

  2. 2.

    Betz R, Shufflebarger H (2001) Anterior versus posterior instrumentation for the correction of thoracic idiopathic scoliosis. Spine 26:1095–1100

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Box G, Hunter W, Hunter J (1978) Statistics for experimenters. Wiley, New York

    Google Scholar 

  4. 4.

    Brodke D, Bachus K, Mohr A, Nguyen BK (2001) Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs: a biomechanical analysis. Spine 1:373–379

    Article  CAS  Google Scholar 

  5. 5.

    Brodke D, Gollogly S, Bachus K, Mohr A, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 1794–1801

  6. 6.

    Choma T, Chwirut D, Polly D (2001) Biomechanics of long segment fixation: hook patterns and rod strain. J Spinal Disord 14:125–132

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Crawford A (2004) Anterior surgery in the thoracic and lumbar spine: Endoscopic techniques in children. J Bone Joint Surg Am 86:2752–2673

    Google Scholar 

  8. 8.

    Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis: A preliminary report. Clin Orthop 62:192–202

    PubMed  CAS  Google Scholar 

  9. 9.

    Fricka K, Mahar A, Newton P (2002) Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without structural support. Spine 27:702–706

    PubMed  Article  Google Scholar 

  10. 10.

    Goel V, Ilder D, Pope M (1995) Biomechanical testing of the spine: load-controlled versus displacement-controlled analysis. Spine 20:2354–2357

    PubMed  CAS  Google Scholar 

  11. 11.

    Grassmann S, Oxland T, Gerich U, Nolte L (1998) Constrained testing conditions affect the axial rotation response of lumbar functional spinal units. Spine 23:1155–1162

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Hitchon P, Brenton M, Coppes J, From A, Torner J (2003) Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws. Spine 28:9–13

    PubMed  Article  Google Scholar 

  13. 13.

    Hitchon P, Goel V, Rogge T, Grosland N, Torner J (1999) Biomechanical studies on two thoracolumbar implants in cadaveric spines. Spine 24:213–218

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Joncas J, Labelle H, Poitras B, Duhaime M, Rivard CH, Leblanc R (1996) Dorso-lumbal pain and idiopathic scoliosis in adolescence. Ann Chir 50:637–640

    PubMed  CAS  Google Scholar 

  15. 15.

    Liljenqvist U, Hackenberg L, Link T, Halm H (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67:157–163

    PubMed  CAS  Google Scholar 

  16. 16.

    Lowe T, Betz R, Lenke L, Clements D, Harms J, Newton P, Haher T, Merola A, Wenger D (2003) Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine 28:208–216

    Article  Google Scholar 

  17. 17.

    Mullet H, Odonnell T, Felle P, Orourke K, Fitzpatrick D (2002) Development of a model for occipital fixation: validation of an analogue bone material. Proc Inst Mech Eng 216:37–42

    Google Scholar 

  18. 18.

    Oda I, Cunningham B, Lee G, Abumi K, Kaneda K, Mcafee P (2000) Biomechanical properties of anterior thoracolumbar multisegmental fixation. Spine 25:2303–2311

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Panjabi M, Abuni K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscles forces. A biomechanical model. Spine 14:194–200

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Panjabi M, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae: quantitative three-dimensional anatomy. Spine l16:888–901

    Article  Google Scholar 

  21. 21.

    Patwardhan A, Havey R, Meade K, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1012

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Quint U, Wilke H, Shirazi-adl A, Parnianpour M, Loer F, Claes L (1998) Importance of the intersegmental trunk muscles for the stability of the lumbar spine. A biomechanical study in vitro. Spine 23:1937–1945

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Regan J, Mack M, Picetti G (1995) A technical report on video-assisted thoracoscopy in thoracic spinal surgery: preliminary description. Spine 20:831–837

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:557–561

    Article  Google Scholar 

  25. 25.

    Shimamoto N, Kotani Y, Shono Y, Kadoya K, Abumi K, Kaneda K, Minami A (2001) Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation. Spine 26:2701–2708

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Shimamoto N, Kotani Y, Shono Y, Kadoya K, Abumi K, Minami A, Kaneda K (2003) Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis. Spine 28:1678–1685

    PubMed  Article  Google Scholar 

  27. 27.

    Spiegel D, Cunningham B, Oda I, Dormans J, Mcafee P, Drummond D (2000) Anterior vertebral screw strain with and without solid interspace support. Spine 25:2755–2761

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Szivek JA, Thomas M, Benjamin JB (1993) Characterization of a synthetic foam as a model for human cancellous bone. J appl Biomater 4:269–272

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Takemura Y, Yamamoto H, Tani T (1999) Biomechanical study of the development of scoliosis, using a thoracolumbar spine model. J Orthop Sci 4:439–445

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Wattenbarger J, Herring J, Bronson D, Ashman R (2001) Mechanical testing of a single rod versus a double rod in a long-segment animal model. J Spinal Disord 14:232–236

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    White A III, Panjabi M (1990) Clinical biomechanics of the spine. JB Lippincott Company, Philadelphia

    Google Scholar 

  32. 32.

    Wilke H, Antonius R, Neller S, Schulthei M, Bergmann G, Friedmar G, Claes L (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? a comparison of in vivo and in vitro load components in an internal fixator. Spine 26:636–642

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Josee Carrier for her computer programming support. This research was funded by the Natural Sciences and Engineering Research Council of Canada (R&D coop program with Medtronic Sofamor Danek) and the Canada Research Chair Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cloutier, L.P., Aubin, C. & Grimard, G. Biomechanical study of anterior spinal instrumentation configurations. Eur Spine J 16, 1039–1045 (2007). https://doi.org/10.1007/s00586-006-0246-1

Download citation

Keywords

  • Anterior instrumentation
  • Biomechanical testing
  • Coupling
  • Follower load