Skip to main content

Two column lesions in the thoracolumbar junction: anterior, posterior or combined approach? A comparative biomechanical in vitro investigation

Abstract

There are various surgical techniques for the treatment of spinal fractures in the thoracolumbar region. Several implants have been developed for anterior or posterior instrumentation. Optimal treatment of unstable thoracolumbar osseous and ligamentous injuries remains controversial. To compare the stabilizing effects of an antero-lateral, thoracoscopically implantable plate system (macsTL, Aesculap, Germany) with the stability provided by a fixateur interne (SOCON, Aesculap, Germany), this in vitro investigation examined six human bisegmental (T12–L2) spinal units. Specimens were tested intact, and with simulation of osseous lesions in the anterior and ligamentous lesions in the posterior column (combined A/B-fracture). While loaded in the main anatomical planes such as flexion/extension, left and right lateral bending and left and right axial rotation with a bending moment of 7.5 Nm in a special testing jigs, motion analysis was performed. Quantitative interpretation of the stabilizing effect was achieved using a contactless three-dimensional motion analysis system. Each specimen was tested in four different scenarios: the first step measured movements of intact spinal segments. For the second step, specimens underwent simulation of combined A/B-fracture provided with bisegmental (T12/L2) antero-lateral fixation and bone strut graft from the iliac crest. For the third step, segments were additionally stabilized by the fixateur interne. The last measurement (fourth step) was performed after removing the anterior instrumentation. Range of motion (ROM) values were compared and statistically evaluated. Compared to the intact specimens the anterior instrumentation of the combined lesion, simulated A/B-fracture, leads to a stabilizing effect in flexion/extension and lateral bending. In contrast to these findings the torsional instability increased for the upper segment and bisegmentally. A maximum rigidity, beyond intact values, was registered for each anatomical plane with the combined instrumentation: antero-lateral and fixateur interne. After removing the anterior screw plate system maximum movements, in all segments for flexion/extension and lateral bending, bisegmentally and for the upper segment in axial rotation, were less than ROM values measured with the anterior system only. With respect to these findings a combined ventro-dorsal stabilization procedure should be considered for ligamentous disruptions of the posterior column in combination with A-fractures in the thoracolumbar junction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. An HS, Lim TH, You JW, Hong JH, Eck J, McGrady L (1995) Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. Spine 20:1979–1983

    PubMed  CAS  Google Scholar 

  2. Been HD, Bouma GJ (1999) Comparison of two types of surgery for thoraco-lumbar burst fractures: combined anterior and posterior stabilisation vs. posterior instrumentation only. Acta Neurochir (Wien) 141:349–357

    Article  CAS  Google Scholar 

  3. Beisse R, Potulski M, Bühren V (2001) Endoscopic techniques for the management of spinal trauma. Eur J Trauma 27:275–291

    Google Scholar 

  4. Beisse R, Potulski M, Beger J, Bühren V (2002) Development and clinical application of a thoracoscopically implantable anterior plate for treatment of thoracolumbar fractures and instabilities. Orthopäde 31:413–422

    PubMed  Article  CAS  Google Scholar 

  5. Beisse R, Mückley T, Schmidt MH, Hauschild M, Bühren V (2005) Surgical technique and results of endoscopic anterior spinal canal decompression. J Neurosurg Spine 2:128–136

    PubMed  Article  Google Scholar 

  6. Bozkus H, Chamberlain RH, Perez Garza LE, Crawford NR, Dickman CA (2004) Biomechanical comparison of anterolateral plate, lateral plate and pedicle screw-rods for enhancing anterolateral lumbar interbody cage stabilization. Spine 29:635–641

    PubMed  Article  Google Scholar 

  7. Brodke DS, Gollogly S, Bachus KN, Mohr RA, Nguyen B-KN (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28:1794–1801

    PubMed  Article  Google Scholar 

  8. Bühren V (2001) Injuries of the thoracic and lumbar spine. Chirurg 72:865–878

    PubMed  Article  Google Scholar 

  9. Closhy JC, Akbarnia BA, Buchholz RD, Burkus JK, Backer RJ (1992) Neurologic recovery associated with anterior decompression of spine fractures at the thoracolumbar junction (T12-L1). Spine 17(Suppl 8):325S–330S

    Google Scholar 

  10. Danisa OA, Shaffrey CI, Jane JA, Whitehill R, Wang G-J, Szabo TA, Hansen CA, Shaffrey ME, Chan DPK (1995) Surgical approaches for the correction of unstable thoracolumbar burst fractures: a retrospective analysis of treatment outcomes. J Neurosurg 83:977–983

    PubMed  CAS  Article  Google Scholar 

  11. Dick JC, Brodke DS, Zdeblick TA, Bartel BD, Kunz DN, Rapoff AJ (1997) Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine 22:744–750

    PubMed  Article  CAS  Google Scholar 

  12. Dickman CA, Yahiro MA, Lu HTC, Melkerson MN (1994) Surgical treatment alternatives for fixation of unstable fractures of the thoracic and lumbar spine. A meta analysis. Spine 19(Suppl 20):2266S–2273S

    PubMed  CAS  Google Scholar 

  13. Ferguson RL, Tencer AF, Woodward P, Allen BL Jr (1988) Biomechanical comparison of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 13:453–460

    PubMed  Article  CAS  Google Scholar 

  14. Flamme CH, Hurschler C, Heymann C, von der Heide N (2005) Comparative biomechanical testing of anterior and posterior stabilization procedures. Spine 30:E352-E362

    PubMed  Article  Google Scholar 

  15. Fredrickson BE, Edwards WT, Rauschning W, Bayley JC, Yuan HA (1992) Volvo award in experimental studies. Vertebral burst fractures an experimental, morphologic, and radiographic study. Spine 17:1012–1021

    PubMed  Article  CAS  Google Scholar 

  16. Ghanayem AJ, Zdeblick TA (1997) Anterior instrumentation in the management of thoracolumbar burst fractures. Clin Orthop 335:89–100

    PubMed  Google Scholar 

  17. Haas N, Blauth M, Tscherne H (1991) Anterior plating in thoracolumbar spine injuries. Indication, technique and results. Spine 16(Suppl 3):100S–111S

    Google Scholar 

  18. Kaneda K, Taneichi H, Abumi K, Hashimoto T, Satoh S, Fujiya M (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg [Am] 79:69–83

    CAS  Google Scholar 

  19. Knop C, Blauth M, Bastian L, Lange U, Kesting J, Tscherne H (1997) Fractures of the thoracolumbar spine. Late results and consequences of dorsal instrumentation. Unfallchirurg 100:630–639

    PubMed  Article  CAS  Google Scholar 

  20. Kostuik JP (1988) Anterior fixation for burst fractures of the thoracic and lumbar spine with or without neurological involvement. Spine 13:286–293

    PubMed  Article  CAS  Google Scholar 

  21. Krag MH (1991) Biomechanics of thoracolumbar spinal fixation. A review. Spine 16(3 Suppl):84–99

    Article  Google Scholar 

  22. Lim TH, An HS, Hong JH, Ahn JY, You JW, Eck J, McGrady LM (1997) Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22:261–266

    PubMed  Article  CAS  Google Scholar 

  23. Magerl F, Aebi M, Gertzbein D, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201

    PubMed  Article  CAS  Google Scholar 

  24. Mann KA, McGowan DP, Frdrickson BE, Falahee M, Yuan HA (1990) A biomechanical investigation of short segment spinal fixation for burst fractures with varying degrees of posterior disruption. Spine 15:470–478

    PubMed  Article  CAS  Google Scholar 

  25. McAfee PC (1994) Complications of anterior approaches to the thoracolumbar spine. Emphasis on Kaneda instrumentation. Clin Orthop 306:110–119

    PubMed  Google Scholar 

  26. Oertel J, Niendorf W-R, Darwish N, Schroeder HWS, Gaab MR (2004) Limitations of dorsal transpedicular stabilization in unstable fractures of the lower thoracic and lumbar spine: an analysis of 133 patients. Acta Neurochir Wien 146:771–777

    PubMed  CAS  Google Scholar 

  27. Potulski M, Beisse R, Bühren V (1999) Thoracoscopy-guided management of the “anterior column”. Methods and results. Orthopäde 28:723–730

    PubMed  CAS  Google Scholar 

  28. Rohlmann A, Zander T, Bergmann G (2005) Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants. Eur Spine J 14:445–453

    PubMed  Article  Google Scholar 

  29. Sasso RC, Best NM, Reilly TM, McGuire RA Jr (2005) Anterior-only stabilization of three column thoracolumbar injuries. J Spinal Disord Tech 18(Suppl 1):S7–S14

    PubMed  Article  Google Scholar 

  30. Schreiber U, Bence T, Bader R, Beisse R, Grupp T, Mittelmeier W, Steinhauser E (2001) Validation of a newly developed experimental setup for segmental spinal testing. J Biomech 34(Suppl):65–66

    Google Scholar 

  31. Schreiber U, Bence T, Grupp T, Steinhauser E, Mückley T, Mittelmeier W, Beisse R (2005) Is a single antero lateral screw-plate fixation for the treatment of spinal fractures in the thoracolumbar junction sufficient? A biomechanical in vitro investigation. Eur Spine J 14:197–204

    PubMed  Article  Google Scholar 

  32. Schultheiss M, Hartwig E, Kinzl L, Claes L, Wilke HJ (2004) Thoracolumbar fracture stabilization: comparative biomechanical evaluation of a new video-assisted implantable system. Eur Spine J 13:93–100

    PubMed  Article  CAS  Google Scholar 

  33. Slosar PJ, Patwardhan AG, Lorenz M, Havey R, Sartori M (1995) Instability of the lumbar burst fracture and limitations of transpedicular instrumentation. Spine 20:1452–1461

    PubMed  Article  Google Scholar 

  34. Wilke HJ, Wenger K, Claes LE (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of the spinal implants. Eur Spine J 7:148–154

    PubMed  Article  CAS  Google Scholar 

  35. Wilke HJ, Kemmerich V, Claes LE, Arand M (2001) Combined anteroposterior spinal fixation provides superior stabilisation to a single anterior or posterior procedure. J Bone Joint Surg [Br] 83:609–617

    Article  CAS  Google Scholar 

  36. Wood GW 2nd, Boyd RJ, Carothers TA, Mansfield FL, Rechtine GL, Rozen MJ, Sutterlin CE 3rd (1995) The effect of pedicle screw/plate fixation on lumbar/lumbosacral autogenous bone graft fusions in patients with degenerative disc disease. Spine 20:819–830

    PubMed  Article  Google Scholar 

  37. Wood KB, Bohn D, Mehbod A (2005) Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit. A prospective, randomized study. J Spinal Disord Tech 18(Suppl 1):S15–S23

    PubMed  Article  Google Scholar 

Download references

Acknowledgment

We thank Aesculap AG & Co. KG for providing funding for this study, and the Institute for Medical Statistics and Epidemiology, Technical University of Munich for support in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Bence.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bence, T., Schreiber, U., Grupp, T. et al. Two column lesions in the thoracolumbar junction: anterior, posterior or combined approach? A comparative biomechanical in vitro investigation. Eur Spine J 16, 813–820 (2007). https://doi.org/10.1007/s00586-006-0201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0201-1

Keywords

  • Spine
  • Biomechanics
  • In vitro testing
  • Fixateur interne
  • Angle-stable plate system