Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction

Abstract

Over the past few years, substantial progress has been made in the field of stem cell regeneration of the intervertebral disc. Autogenic mesenchymal stem cells in animal models can arrest intervertebral disc degeneration or even partially regenerate it and the effect is suggested to be dependent on the severity of degeneration. Mesenchymal stem cells (MSCs) are able to escape alloantigen recognition which is an advantage for allogenic transplantation. A number of injectable scaffolds have been described and various methods to pre-modulate MSCs’ activity have been tested. In future, work will need to address the use of mesenchymal stem cells in large animal models and the fate of the implanted mesenchymal stem cells, particularly in the long term, in animals. This review examines the state-of-the-art in the field of stem cell regeneration of the intervertebral disc, and critically discusses, with scientific support, the issues involved, before stem cells could be used in human subjects.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adams MA (2004) Biomechanics of back pain. Acupunct Med 22:178–188

    PubMed  Article  Google Scholar 

  2. 2.

    Ala-Kokko L (2002) Genetic risk factors for lumbar disc disease. Ann Med 34:42–47

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    An HS, Takegami K, Kamada H et al (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine 30:25–31; discussion -2

    Google Scholar 

  4. 4.

    Anderson DG, Risbud MV, Shapiro IM et al (2005) Cell-based therapy for disc repair. Spine J 5:297S–303S

    PubMed  Article  Google Scholar 

  5. 5.

    Annunen S, Paassilta P, Lohiniva J et al (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Bertram H, Kroeber M, Wang H et al (2005) Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem Biophys Res Commun 331:1185–1192

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bhardwaj R, Midha R (2004) Synchronous lumbar disc herniation in adult twins. Case report. Can J Neurol Sci 31:554–557

    PubMed  Google Scholar 

  8. 8.

    Bibby SR, Fairbank JC, Urban MR et al (2002) Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 27:2220-8; discussion 7–8

    Google Scholar 

  9. 9.

    Boos N, Weissbach S, Rohrbach H et al (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27:2631–2644

    PubMed  Article  Google Scholar 

  10. 10.

    Budinger TF, Benaron DA, Koretsky AP (1999) Imaging transgenic animals. Annu Rev Biomed Eng 1:611–648

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Cheung KM, Chan D, Karppinen J et al (2006) Association of the Taq I allele in vitamin d receptor with degenerative disc disease and disc bulge in a chinese population. Spine 31:1143–1148

    PubMed  Article  Google Scholar 

  12. 12.

    Cheung KM, Ho G, Leung VY et al (2005) The effect of severity of disc degeneration on mesenchymal stem cells’ ability to regenerate the intervertebral disc: a rabbit model. Eur Cell Mater 10(Suppl 3):45

    Google Scholar 

  13. 13.

    Crevensten G, Walsh AJ, Ananthakrishnan D et al (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32:430–434

    PubMed  Article  Google Scholar 

  14. 14.

    De Bari C, Dell’Accio F, Tylzanowski P et al (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    PubMed  Article  Google Scholar 

  15. 15.

    Djouad F, Bony C, Haupl T et al (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7:R1304–R1315

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Fraser JK, Wulur I, Alfonso Z et al (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Freemont TJ, LeMaitre C, Watkins A et al (2001) Degeneration of intervertebral discs: current understanding of cellular and molecular events, and implications for novel therapies. Expert Rev Mol Med 2001:1–10

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Ganey T, Libera J, Moos V et al (2003) Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine 28:2609–2620

    PubMed  Article  Google Scholar 

  19. 19.

    Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    PubMed  Article  Google Scholar 

  20. 20.

    Gorensek M, Jaksimovic C, Kregar-Velikonja N et al (2004) Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett 9:363–373

    PubMed  Google Scholar 

  21. 21.

    Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Goupille P, Jayson MI, Valat JP et al (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23:1612–1626

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Gruber HE, Norton HJ, Ingram JA et al (2005) The SOX9 transcription factor in the human disc: decreased immunolocalization with age and disc degeneration. Spine 30:625–630

    PubMed  Article  Google Scholar 

  24. 24.

    Grunhagen T, Wilde G, Soukane DM et al (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 88(Suppl 2):30–35

    PubMed  Article  Google Scholar 

  25. 25.

    Han SM, Lee SY, Cho MH et al (2001) Disc hydration measured by magnetic resonance imaging in relation to its compressive stiffness in rat models. Proc Inst Mech Eng [H] 215:497–501

    CAS  Google Scholar 

  26. 26.

    Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Jim JJ, Noponen-Hietala N, Cheung KM et al (2005) The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine 30:2735–2742

    PubMed  Article  Google Scholar 

  29. 29.

    Kashofer K, Bonnet D (2005) Gene therapy progress and prospects: stem cell plasticity. Gene Ther 12:1229–1234

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Kawakami M, Matsumoto T, Hashizume H et al (2005) Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat. Spine 30:1933–1939

    PubMed  Article  Google Scholar 

  31. 31.

    Kim KW, Kim YS, Ha KY et al (2005) An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine 30:1247–1251

    PubMed  Article  Google Scholar 

  32. 32.

    Kim KW, Lim TH, Kim JG et al (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28:982–990

    PubMed  Article  Google Scholar 

  33. 33.

    Koestenbauer S, Zech NH, Juch H et al (2006) Embryonic stem cells: similarities and differences between human and murine embryonic stem cells. Am J Reprod Immunol 55:169–180

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Korbling M, Robinson S, Estrov Z et al (2005) Umbilical cord blood-derived cells for tissue repair. Cytotherapy 7:258–261

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Kuo CK, Li WJ, Mauck RL et al (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18:64–73

    PubMed  Article  Google Scholar 

  36. 36.

    Leo BM, Li X, Balian G et al (2004) In vivo bioluminescent imaging of virus-mediated gene transfer and transduced cell transplantation in the intervertebral disc. Spine 29:838–844

    PubMed  Article  Google Scholar 

  37. 37.

    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Levy YS, Stroomza M, Melamed E et al (2004) Embryonic and adult stem cells as a source for cell therapy in Parkinson’s disease. J Mol Neurosci 24:353–386

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Li X, Lee JP, Balian G et al (2005) Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus. Connect Tissue Res 46:75–82

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Li X, Leo BM, Beck G et al (2004) Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine 29:2229–2234

    PubMed  Article  Google Scholar 

  41. 41.

    Liu H, Kemeny DM, Heng BC et al (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 176:2864–2871

    PubMed  CAS  Google Scholar 

  42. 42.

    MacGillivray TE (2003) Fibrin sealants and glues. J Card Surg 18:480–485

    PubMed  Article  Google Scholar 

  43. 43.

    Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Miyahara Y, Nagaya N, Kataoka M et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Murphy JM, Fink DJ, Hunziker EB et al (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    PubMed  Article  Google Scholar 

  47. 47.

    Mwale F, Iordanova M, Demers CN et al (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11:130–140

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Nishida K, Kang JD, Gilbertson LG et al (1999) Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 24:2419–2425

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Noel D, Gazit D, Bouquet C et al (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Nomura T, Mochida J, Okuma M et al (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res:94–101

  51. 51.

    Noponen-Hietala N, Virtanen I, Karttunen R et al (2005) Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica. Pain 114:186–194

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Okuma M, Mochida J, Nishimura K et al (2000) Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 18:988–997

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Paul R, Haydon RC, Cheng H et al (2003) Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 28:755–763

    PubMed  Article  Google Scholar 

  54. 54.

    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Pountos I, Jones E, Tzioupis C et al (2006) Growing bone and cartilage: the role of mesenchymal stem cells. J Bone Joint Surg Br 88-B:421–426

    Article  Google Scholar 

  56. 56.

    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Richardson SM, Curran JM, Chen R et al (2006) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. Biomaterials

  58. 58.

    Richardson SM, Walker RV, Parker S et al (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24:707–716

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Ringden O, Le Blanc K (2005) Allogeneic hematopoietic stem cell transplantation: state of the art and new perspectives. Apmis 113:813–830

    PubMed  Article  Google Scholar 

  60. 60.

    Risbud MV, Albert TJ, Guttapalli A et al (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 29:2627–2632

    PubMed  Article  Google Scholar 

  61. 61.

    Roberts S, Menage J, Duance V et al (1991) 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine 16:1030–1038

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Roh C, Lyle S (2006) Cutaneous stem cells and wound healing. Pediatr Res 59:100R–103R

    PubMed  Article  Google Scholar 

  63. 63.

    Ryan JM, Barry FP, Murphy JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Article  CAS  Google Scholar 

  64. 64.

    Sakai D, Mochida J, Iwashina T et al (2006) Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27:335–345

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Sakai D, Mochida J, Iwashina T et al (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30:2379–2387

    PubMed  Article  Google Scholar 

  66. 66.

    Sakai D, Mochida J, Yamamoto Y et al (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24:3531–3541

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Sato M, Asazuma T, Ishihara M et al (2003) An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 28:548–553

    PubMed  Article  Google Scholar 

  68. 68.

    Seki S, Kawaguchi Y, Chiba K et al (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Sell S (2001) The role of progenitor cells in repair of liver injury and in liver transplantation. Wound Repair Regen 9:467–482

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Semb H (2005) Human embryonic stem cells: origin, properties and applications. Apmis 113:743–750

    PubMed  Article  Google Scholar 

  71. 71.

    Semba K, Araki K, Li Z et al (2006) A novel murine gene, sickle tail, linked to the Danforth’s short tail locus, is required for normal development of the intervertebral disc. Genetics 172:445–456

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Shafritz DA, Oertel M, Menthena A et al (2006) Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43:S89–S98

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Sive JI, Baird P, Jeziorsk M et al (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Steck E, Bertram H, Abel R et al (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23:403–411

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Tajbakhsh S (2005) Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res 306:364–372

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Takegami K, An HS, Kumano F et al (2005) Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5:231–238

    PubMed  Article  Google Scholar 

  78. 78.

    Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Tuan RS (2004) Biology of developmental and regenerative skeletogenesis. Clin Orthop Relat Res:S105–S117

  80. 80.

    Videman T, Gibbons LE, Battie MC et al (2001) The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density. Spine 26:E7–E12

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122:659–667

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Walker MH, Anderson DG (2004) Molecular basis of intervertebral disc degeneration. Spine J 4:158S–66S

    PubMed  Article  Google Scholar 

  83. 83.

    Wallach CJ, Sobajima S, Watanabe Y et al (2003) Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 28:2331–2337

    PubMed  Article  Google Scholar 

  84. 84.

    Watanabe K, Mochida J, Nomura T et al (2003) Effect of reinsertion of activated nucleus pulposus on disc degeneration: an experimental study on various types of collagen in degenerative discs. Connect Tissue Res 44:104–108

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Watts C, McConkey H, Anderson L et al (2005) Anatomical perspectives on adult neural stem cells. J Anat 207:197–208

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Weiler C, Nerlich AG, Zipperer J et al (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Yamamoto Y, Mochida J, Sakai D et al (2004) Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine 29:1508–1514

    PubMed  Article  Google Scholar 

  88. 88.

    Yang M, Ma QJ, Dang GT et al (2005) In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy 7:273–281

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Yoon ST, Park JS, Kim KS et al (2004) ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 29:2603–2611

    PubMed  Article  Google Scholar 

  90. 90.

    Zhang YG, Guo X, Xu P et al (2005) Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430:219–226

    PubMed  Article  Google Scholar 

  91. 91.

    Zhu Y, McAlinden A, Sandell LJ (2001) Type IIA procollagen in development of the human intervertebral disc: regulated expression of the NH(2)-propeptide by enzymic processing reveals a unique developmental pathway. Dev Dyn 220:350–362

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was partially supported by a grant from the University Grants Committee of the Hong Kong Special Administrative Region of China (HKU7496/05M).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. C. Cheung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leung, V.Y.L., Chan, D. & Cheung, K.M.C. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J 15, 406–413 (2006). https://doi.org/10.1007/s00586-006-0183-z

Download citation

Keywords

  • Mesenchymal stem cells
  • Intervertebral disc degeneration
  • Intervertebral disc regeneration
  • Tissue engineering