Skip to main content
Log in

Clinical, radiological and histological study of the failure of cervical interbody fusions with bone substitutes

  • Origianl Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Few histological studies on bone substitutes in human cervical spine are available and the biological processes of bone substitutes are not well documented. The authors studied four failure cases of cervical interbody fusion: two cases with hydroxyapatite (HA), one case with β-tricalcium phosphate ceramic (β-TCP) and one case with xenograft (bovine bone). Clinical data showed that all the patients experienced neck pain with or without numbness of upper extremity due to fusion failure. Successful fusions were achieved after the salvage surgeries in which autograft were used. Radiographs showed that radiolucent lines were present in all cases. Two HA substitutes fractured without complications. One of them sank into the vertebral body. Some small β-TCP fragments were found under the microscope. Histological study demonstrated only a few newly formed bones at the interface of the substitutes. The fragments of HA were encapsulated by fibrous tissue. The degradation process and bone regeneration were more active in β-TCP than in HA. The intertrabecular spaces of bovine bone were filled with fibrous tissue. The results suggest that a porous calcium phosphate ceramic with special design might assure bone ingrowth and meet the mechanical requirements in cervical interbody fusion. The complications of these materials in the cervical spine should be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20:1055–1060

    Article  PubMed  CAS  Google Scholar 

  2. Bruneau M, Nisolle JF, Gilliard C, Gustin T (2001) Anterior cervical interbody fusion with hydroxyapatite graft and plate system. Neurosurg Focus (electronic resource) 10:Article 8

  3. Cloward RB (1958) The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602–617

    PubMed  CAS  Google Scholar 

  4. Cook SD, Dalton JE, Tan EH, Tejeiro WV, Young MJ, Whitecloud TS III (1994) In vivo evaluation of anterior cervical fusions with hydroxyapatite graft material. Spine 19:1856–1866

    Article  PubMed  CAS  Google Scholar 

  5. Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I (1990) Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46:20–27

    Article  PubMed  CAS  Google Scholar 

  6. Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 24:379–396

    Article  PubMed  CAS  Google Scholar 

  7. Flautre B, Descamps M, Delecourt C, Blary MC (2001) Porous HA ceramic for bone replacement: role of the pores and interconnections—experimental study in the rabbit. J Biomed Mater Res 12:679–682

    CAS  Google Scholar 

  8. GESTO (Association pour l’étude des Greffes Et Substituts Tissulaires en Orthopédie) (1999) Les substituts osseux en 1999, pp 7–8, 13–14, 36–40

  9. Ito M, Abumi K, Shono Y, Kotani Y, Minami A, Kaneda K (2002) Complications related to hydroxyapatite vertebral spacer in anterior cervical spine surgery. Spine 27:428–431

    Article  PubMed  Google Scholar 

  10. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278

    PubMed  CAS  Google Scholar 

  11. Kim P, Wakai S, Matsuo S, Moriyama T, Kirino T (1998) Bisegmental cervical interbody fusion using hydroxyapatite implants: surgical results and long-term observation in 70 cases. J Neurosurg 88:21–27

    Article  PubMed  CAS  Google Scholar 

  12. Kuhne JH, Bartl R, Frisch B, Hammer C, Jansson V, Zimmer M (1994) Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand 65:246–252

    Article  PubMed  CAS  Google Scholar 

  13. Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, Hardouin P (1998) Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 42:357–367

    Article  PubMed  CAS  Google Scholar 

  14. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of interconnections in porous Bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10:111–120

    Article  PubMed  CAS  Google Scholar 

  15. McMurray GN (1982) The evaluation of Kiel bone in spinal fusions. J Bone Joint Surg Br 64:101–104

    PubMed  CAS  Google Scholar 

  16. Neo M, Kotani S, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T, Bando Y (1992) A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. J Biomed Mater Res 26:1419–1432

    Article  PubMed  CAS  Google Scholar 

  17. Pintar FA, Maiman DJ, Hollowell JP, Yoganandan N, Droese KW, Reinartz JM, Cuddy B (1994) Fusion rate and biomechanical stiffness of hydroxyapatite versus autogenous bone grafts for anterior discectomy. An in vivo animal study. Spine 19:2524–2528

    Article  PubMed  CAS  Google Scholar 

  18. Ramani PS, Kalbag RM, Sengupta RP (1975) Cervical spinal interbody fusion with Kiel bone. Br J Surg 62:147–150

    Article  PubMed  CAS  Google Scholar 

  19. Senter HJ, Kortyna R, Kemp WR (1989) Anterior cervical discectomy with hydroxyapatite fusion. Neurosurgery 25:39–42; discussion 42–43

    Google Scholar 

  20. Shima T, Keller JT, Alvira MM, Mayfield FH, Dunsker SB (1979) Anterior cervical discectomy and interbody fusion. An experimental study using a synthetic tricalcium phosphate. J Neurosurg 51:533–538

    Article  PubMed  CAS  Google Scholar 

  21. Smith GW, Robinson RA (1958) The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am 40:607–624

    PubMed  Google Scholar 

  22. Suetsuna F, Yokoyama T, Kenuka E, Harata S (2001) Anterior cervical fusion using porous hydroxyapatite ceramics for cervical disc herniation. A two-year follow-up. Spine J 1:348–357

    Article  PubMed  CAS  Google Scholar 

  23. Sutter B, Friehs G, Pendl G, Tolly E (1995) Bovine dowels for anterior cervical fusion: experience in 66 patients with a note on postoperative CT and MRI appearance. Acta Neurochir (Wien) 137:192–198

    Article  CAS  Google Scholar 

  24. Thalgott JS, Fritts K, Giuffre JM, Timlin M (1999) Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine 24:1295–1299

    Article  PubMed  CAS  Google Scholar 

  25. Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone-hydroxyapatite interface. J Biomed Mater Res 18:719–726

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxi Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Chopin, D., Hardouin, P. et al. Clinical, radiological and histological study of the failure of cervical interbody fusions with bone substitutes. Eur Spine J 15, 1196–1203 (2006). https://doi.org/10.1007/s00586-005-0052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-0052-1

Keywords

Navigation